
Uncertain RanSaC

Ben Tordoff and Roberto Cipolla
Department of Engineering, University of Cambridge

Trumpington Street, Cambridge CB2 1PZ, UK

Abstract

This paper describes a new enhancement to the tech-
nique of estimation by Random Sampling and Consensus.
The current state-of-the-art random sampling schemes are
discussed, in particular looking at the speed of discovery
of the solution. An improved support function is examined,
using linear approximations to the second moments of the
parameter PDFs to more accurately propagate noise. This
improves the proportion of hypotheses which find the under-
lying motion.

1 Introduction
Robust estimation of a signal from highly contaminated

data was revolutionised by the idea of estimation using
Random Sampling And Consensus (RanSaC) introduced by
Fischler and Bolles [4] and later reaffirmed in the statis-
tical literature by Rousseeuw and Leroy [10]. Although
its utility is widespread (two appropriately random exam-
ples of substantially different uses are [7], [9]), RanSaC
has proved particularly effective for estimating inter-image
transforms such as the homography and fundamental ma-
trix [14, 11, 16, 15, 13], where the presence of mis-matches
in the input set of image feature correspondences can, and
usually does, cause havoc.

In the original scheme a minimal set of data points are
selected randomly, used to linearly calculate the transform
and support then sought in the remaining data using a bi-
nary decision boundary on the transformation error. Torr
and Zisserman [13] improved on this by replacing the dis-
crete support threshold by a continuous cost function de-
rived from a Gaussian plus uniform assumption about the
inlying and clutter processes. The support score produced
is then related to the likelihood of the hypothesis, resulting
in a maximum likelihood estimator, MLESaC.

Tordoff and Murray [12] further refined this algorithm
by showing that priors on the data points both increase effi-
ciency and produce posterior estimates of which data points
are valid and which are clutter. In addition they replaced
the random sampling with a sampling guided by the priors,
biasing the search towards valid hypotheses.

Further reductions in computational cost are also gained
using the complementary pre-emptive approach of Nister

[8] and others. This allows poor motion hypotheses to be
discarded early, reducing the cost of hypothesis evaluation.

Whilst MLESaC improved accuracy and Guided Sam-
pling and Consensus (GuiSaC) and pre-emption increased
efficiency, the problem of knowing when sampling could be
stopped remained open. It is well known (eg.[1, 2, 12]) that
the usual calculation based on the proportion of valid data
was often dramatically over-optimistic. Chum et al [1, 2]
addressed this problem by resampling from the set of inly-
ing data when a well supported hypothesis is found. This
explores the local parameter space around good solutions
and widens the reach of “nearly correct” hypotheses.

Here we also examine the inadequacies of the stopping
criterion, but do so by modelling the uncertainties in the es-
timation process explicitly using Gaussian assumptions and
linearisations. In particular section 3 looks at how exist-
ing results on uncertain multiview geometry can be used to
better model estimation errors. Section 4 compares the per-
formance of this new scheme with the standard model be-
fore conclusions are drawn. First, however, the basic guided
sampling and consensus scheme is described in detail.

2 Review: Guided Sampling and Consensus
GuiSaC [12] pre-supposes that feature detection and

matching processes have been applied to successive frames
in an image sequence, yielding an input data set C of n fea-
ture correspondences.

Each feature typically has several putative matches, the
winner chosen based on a match “score”. In the case of
correlation-based matching this score is the likelihood of
each correspondence being in error, determined from learnt
histograms of normalised correlation scores for correct and
incorrect matching [12]. Similarly, for matching based on
more esoteric descriptors (such as Lowe’s SIFT operator
[6]) histograms against any appropriate similarity measure
can be used (eg. angle between description vectors) again
leading to the probability of validity given score p(vi|si)
(abbreviated to p(vi) below).

These probabilities are used as priors to the motion es-
timation process, weighting the random selection of corre-
spondences. For brevity we will consider only two view re-
lations, in particular the planar homography H (4 correspon-
dences per sample) and the fundamental matrix F (using an
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8 correspondence method).
Each motion hypothesis Mh is scored according to how

well it predicts the observed correspondences. If a corre-
spondence is clutter (with probability 1 − p(vi)) its error
under the hypothesised motion, rhi, is assumed uniform.
If, however, it supports the motion it should be correctly
mapped up to Gaussian noise in the image measurements.
This gives a likelihood which is a Gaussian plus Uniform
mixture:

p(rhi|Mh) =

"

e−r2

hi
/2σ2

(2πσ2)d /2

#

p (vi) +

»

1

Ai

–

(1 − p (vi)) , (1)

where σ is the measurement uncertainty (image noise), Ai

is the search area (often the same for all features) and d
the dimensionality of the error — 1D for the fundamental
matrix and 2D for homographies. Making an assumption of
independence, the overall probability of the correspondence
set given the motion hypothesis is

p (C|Mh) = p (Rh|Mh) =

n
Y

i= 1

p (rhi|Mh) ,

and maximising this over many samples eventually yields
a maximum likelihood estimate of the motion. Posterior
estimates of each correspondence’s validity, p(vi|Mh, si),
are also produced and can be used to weight a subsequent
linear or nonlinear estimation.

2.1 Stopping criterion
Summing the posterior validity likelihoods of the corre-

spondences gives an estimate of the expected proportion of
valid matches E(α) ≈ 1

n

∑
n

i
p(vi|Mh, si) and the propor-

tion from the best motion hypothesis is used to estimate the
confidence that at least one sample has contained no clutter

p (Mc) = 1 − (1 − E(α)m)I
, (2)

where m is the sample size and I the number of samples
taken so far. Sampling can therefore be stopped once the
confidence has risen to a suitable level (eg. 99%).

An example pair of images and the inliers
(p(vi|Mh, si) > 5 0% ) and outliers when GuiSaC’ing
for a planar homography are shown in figure 1. For these
images the total number of valid correspondences has
been manually determined. Running GuiSaC for many
thousands of iterations, figure 2 shows the proportion of
the valid set discovered against the proportion of trials able
to find them. In this case the expected proportion of valid
hypotheses is approximately αm = 0.5 % , but the RanSaC
curve suggests that only 0.3 3 % find half or more of the
inliers. This is alleviated by guiding the sampling so that
more valid hypotheses are tried, but many valid hypotheses
still fail to find many of the inliers. This is for two reasons:

1. ill-conditioning — even valid correspondences some-
times badly constrain the motion

Figure 1. GuiSaC at work on an image pair related by a ho-
mography. The correspondences are separated into inliers
(left) and outliers (right) using their posterior probability of
belonging to the best motion hypothesis.
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Figure 2. The proportion of inliers found by each motion
hypothesis gives an indication of the performance of the al-
gorithms. The stopping condition predicts that around 1 in
200 hypotheses will be valid, but in these trials only 1 in
300 fi nds half or more of the inlier set.

2. noise — the motion is hypothesised from noisy mea-
surements and is therefore noisy.

These obstacles can both be better understood by estimating
the uncertainty in the motion parameters.

3 Uncertain motion estimation
The two view relations considered here (homography

and fundamental matrix) can both be estimated as the null
vector of a symmetric measurement matrix. For a motion
with parameter vector t we build the system

t
>
A
>
At = 0

such that t ≈ u0, the eigenvector of M = A
>
A correspond-

ing to the smallest eigenvalue λ0 (= 0 when a minimal set
of data is used). The remaining eigenvectors describe the
relationship between perturbations of the measurement ma-
trix and the estimated transform (see eg. [5]),

δu0 ≈
n

X

i= 1

uiu
>

i

λ0 − λi
δMu0 = JδMu0 ,

The covariance of u0, and hence of the transform parame-
ters is calculated as

CT = E
ˆ

δu0δu
>

0

˜

= E
h

JδMu0u
>

0 δM
>
J
>

i

= J E
h

A
>

δAu0u
>

0 δA
>
A

i

J
> .
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where δM ≈ δA
>
A + A

>δA. If the noise on each feature
is assumed independent, and each correspondence gives m
rows of A, then some rearrangement gives the contribution
from each feature to be

CTi
= JCAi

J
> with CAi

=
m

X

j=1

m
X

k=1

(aja
>

k )u>

0 E[δajδa
>

k ]u0 ,

and the total covariance of the transform is estimated from
N correspondences as CT =

∑N

i=1
CTi

. The uncertainty in
the error ri now arises from three sources:

1. Measurement uncertainty in image 1, Cx

2. Uncertainty in the estimated transform, CT

3. Measurement uncertainty in image 2, C
x
′

Assuming image noise is isotropic and Gaussian, the ho-
mogeneous covariances are Cx = diag(σ2, σ2, 0 ) and
C
x
′ = diag(σ′2, σ′2, 0 ), and the expressions for CAi

can
be simplified as follows.

3.1 Fundamental matrix
Each correspondence produces a single row for the mea-

surement matrix A

a
> =

`

x
>x′

x
>y′

x
>

´

where x = (x, y, 1 )> .

Assuming isotropic Gaussian noise of variance σ2 in image
1 and σ′2 in image 2,

CAi
= γaa

>

where γ = σ
2

ˆ

(x′
f1 + y

′
f4 + f7)

2 + (x′
f2 + y

′
f5 + f8)

2
˜

+ σ
′2

ˆ

(xf1 + yf2 + f3)
2 + (xf4 + yf5 + f6)

2
˜

.

The total covariance of the epipolar line l is then

Cl = FCxF
> + BCTB

> where B =

2

4

x
>

03 03

03 x
>

03

03 03 x
>

3

5 ,

and both the line and its covariance are then normalised
such that the distance d = l

>
x
′. Adding the covariance of

the target point C
x
′ , the distance of the point from the line

has uncertainty

σ
2

d = l
>
C
x
′ l + x

>
Clx .

3.2 Homography
For a homography [3], each feature correspondence pro-

vides three rows1 to the measurement matrix
0

@

a
>

x

a
>

y

a
>

z

1

A =

0

@

03 −x
> y′

x
>

x
>

03 −x′
x
>

−y′
x
> x′

x
>

03

1

A ,

1Note that az = −x
′
ax − y

′
ay and the three rows only provide two

constraints. For all normal geometries the third row and all terms involving
it may be safely ignored, but are included here for completeness.

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

Figure 3. Examples of the covariances in image 2, for inliers
to two motion hypotheses. Even for good hypotheses such
as these using the full uncertainty fi nds more inliers than
would otherwise be detected.

with x = (x , y, 1 )>. Again, assuming independent Gaus-
sian noise:

CAi
= γxx(axa

>

x ) + γyy(aya
>

y ) + γzz(aza
>

z ) − γxy(axa
>

y + aya
>

x )

− γxz(axa
>

z + aza
>

x ) − γyz(aya
>

z + aza
>

y )

where

γxx = σ
2

n

(h4 − h7y
′)2 + (h5 − h8y

′)2
o

+ σ
′2

n

(h7x + h8y + h9)
2

o

γxy = σ
2

˘
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′
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′
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′
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′
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¯
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˘
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¯
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2

n

(h1y
′ − h4x

′)2 + (h2y
′ − h5x

′)2
o

+ σ
′2

n

(h1x + h2y + h3)2 + (h4x + h5y + h6)
2

o

.

The homogeneous covariance of the transferred point is

C ≈ HCx1H
>

+ BCTB
>

with B as above. This is then linearised around the trans-
ferred point (x̂, ŷ, ŵ)> = Hx and the covariance in the sec-
ond image added

~C = PCP
>

+

»

σ
′2

0

0 σ
′2

–

where P =
1

ŵ2

»

ŵ 0 −x̂

0 ŵ −ŷ

–

.

4 Uncertain RanSaC
We can now use these more detailed covariances in the

Gaussian which represents the inlier likelihood in eqn. 1.
Example covariances are shown in figure 3.

To analyse the benefits of this approach, we consider not
just the number of inliers found, but whether these inliers
are sufficient to accurately determine the motion. To eval-
uate this, each hypothesis is optimised using all discovered
inliers, and the RMS error in the optimised motion parame-
ters (elements of H or F) measured.

For the image pair of figure 1, histograms of the motion
error for valid hypotheses (ie. those containing only valid
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Figure 4. Histograms of the RMS motion error when esti-
mated from inliers to traditional likelihood estimation (top-
left) and uncertain estimation (top-right). The improvement
is more clearly seen from an ROC curve (bottom-left) as the
threshold error is varied (also shown is the improvement if
just the point covariances are considered). This corresponds
to an increased proportion of inliers (bottom-right).

correspondences) and invalid hypotheses are shown in fig-
ure 4, both for the standard method and for the uncertain
motion estimation (whether or not the sampling is guided
is irrelevant). More of the valid hypotheses converge to
low motion error when the full covariances are used, most
clearly seen from the ROC curve. This is due to the in-
creased number of inliers that this method finds given a
valid hypothesis — seen from the proportion plot.

As a modification of standard MLESaC (denoted RUn-
SaC), modelling the uncertainty makes the stopping criteria
more realistic, and when combined with guided sampling
(denoted GUnSaC) this stopping criteria can be exceeded.
In both cases the accuracy of the resulting weighted linear
solution is improved. This improvement comes at a signifi-
cant computational cost — generating each hypothesis (and
its covariance) is around 75% more costly, and since each
feature has a different error covariance the cost of evalua-
tion rises by about 1 50 %. Using a pre-emptive scheme to
avoid unnecessary evaluations is therefore important.

5 Conclusions
In this paper the linear propagation of noise covariances

for motion estimation using RanSaC has been studied. Bet-
ter handling of these error sources leads to the majority of
valid motion hypotheses finding most of the valid corre-
spondences. In turn this leads to fewer motion hypotheses
being required for a given confidence level, or greater confi-
dence for the same number of trials. This approach is com-

plementary to both the Guided Sampling and Pre-emptive
methods, and when used in combination is an ideal basis
for robust frame-rate tracking and structure from motion.
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