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Abstract

We propose a fast and rotate-invariant template
matching using an Orientation Code Difference His-
togram (OCDH). It is fast in order to prune by OCDH,
and robust for template matching even in presence of
some irregularities like shading, highlighting, occlusion
or their combination. This method is based on Ori-
entation Code Matching (OCM)[1, 2] and Orientation
Code Histogram (OH)[3].

1 Introduction

Template matching is an important technique for
one of the major problems in pattern recognition and
image understanding. In the field of template match-
ing, there are many difficult problems, for example ro-
tation image search, occlusion, scaling, change of light
condition, and so on. We proposed Orientation Code
Difference Histogram (OCDH). This method can esti-
mate rotation angle of the image accurately and de-
signed for a gray scale image. It is based on Orienta-
tion Code Matching (OCM)[1, 2] and Orientation Code
Histogram (OH)[3]. It is fast and robust for template
matching even in presence of some irregularities like
shading, highlighting, occlusion or their combination.

2 Orientation Code Difference His-

togram
2.1 Orientation Code (OC)

Define a blightness of the image for a pixel loca-
tion (m,n) is represented by fm. n, and its horizon-
tal and vertical derivatives by Vf, = Jf/0x and
V fy = 0f /0y, respectively. An orientation angle 6,, ,
is computed as § = tan™ (V f,/V f.). The orientation
code is obtained by quantizing 6,, , into N(= 27 /A#f)
levels with a quantization width A# as

Om,n
A0

Cm,n =
N

where [2] is the maximum integer exceeding x. If there
are N pieces of orientation codes then c,, , is ranges

| IVEI+IVAI>T,

: otherwise,

(1)
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between 0 and N — 1. We assign the particular code
N for low contrast pixels for which it is not possible to
stably compute the gradient angles. I' is a parameter
for suppressing the effects of noise from low contrast
neighborhoods. Hereafter, the suffix orientation code
represents location or coordinates in the image. An
example of the orientation codes is depicted in Fig. 1,
which in the case of Af = 22.5[deg](IV = 16).

2.2 Definition of OCDH

A difference between any two orientation codes is
expected not to change even if the image rotates. We
use this orientation code difference (OCD) as a rotate-
invariant feature. Define s as a difference between the
codes ¢, and ¢y

¢ <c¢p <N or

€ — Cas Ca:Cb:N,
s(Ca,cp) =R e —cq + N, N >co>c, (2)
N (ca=N and ¢, #N) or

’ (ca#N and ¢, =N),

where it has a value from 0 to N. It is equivalent to
the number of the counting orientation codes counter-
clockwise from ¢, to ¢,. In the case that either ¢, or
¢y is the particular code N, s is assigned to V. For
example, s(14,2) is 4 and s(2, 14) is 12.

We shows the difference between any two orientation
codes does not change even if the image rotates. The
difference after rotation is given by

S((ca + g) mod N7 (Cb + g) mod N) = S(ca;cb)a (3)
where ¢ is an offset caused by rotation by the angle
¢, which is defined as g = [¢/Af]. Fig. 2 shows an

Fig. 1: 16 Orientation Codes(Af = %).
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Fig. 2: The difference of orientation code ¢
22.5[deg](g = 1).

example of the differense of orientation codes in the
case of image rotations.

We show an example the case N+¢g > c,+g> N >
¢y + g. Here,

Cqo+gmod N =c¢c,+9g—N,
¢+ g mod N =cp +g.

And then

s(ca+9—N,co +9) c+9—(cat+g—N)
cp — Ca + N

s(cq,cp).

When calculating the difference, we generally have
to know corresponding pixels of after rotation, It is,
however, very troublesome to draw these correspon-
dences from images, such as in stereo visions and op-
tical flow detection. Because we have the purpose to
design a robust and rotation-invariant image search al-
gorithm, we introduced OCD as the first key feature
for this task. We showed it is rotation-invariant and
can be calculated from any two pixels which are pre-
ferred to be a part from one another for keeping a level
on precision of rotation measurement.

In order to realize a faster and simpler algorithm,
however, we should avoid some complicated procedures
for searching these target pixel pairs.

Therefore we introduce two techniques to re-
solve. Local-feature-based histograms are effective for
rotation-invariant search. We propose here a combi-
nation of this histogram and ring calculation. When
a center of rotation is assumed through scanning, the
target pixel pairs should locate on the rings around the
center. By utilizing the ring regions for calculation of
OCD and summing up them into the histogram, we
can have a search algorithm of efficient computation.

We define concentric rings at the image center as
shown in Fig. 3(a). We calculate OCD c¢gy and cgy4n
on the diameter which consists of the pixel (g,%) and
(¢,% + ), where the coordinates system of pixels are
expressed by polar coordinates system.

Vg = (V4(0),v4(1),...,v4(N)) is given by

'Uq(k) = Z 6("7 - S(qu)v Cq¢+ﬂ))v (4)

$=0

where 0() is Kronecker’s delta. A similarity measure
based on the histogram intersection[4] is designed to
evaluate the difference between a template histogram
vg and an object histogram v, from the template image

365

=
\\’,, C

(a) The rotation of

qu+r

image
4
8 \‘»
rotation
(+22.5[deg])
10° 14 15

1 11
E Orientation Code nn
Orientation Code Difference
(b) The difference of orientation code on ring

Fig. 3: The difference of orientation code of rotation of
image.

and the subimage, as respectively

1 N
Sy = > min{e,(k), o (k)}. )

9 k=0

where A, represents the pixel amount on the rings of
radius q.

Fig. 4(b) shows the histograms and their intersec-
tion for the image in Fig. 4(a). The dissimilarity D; of
the orientation code difference histograms is given by

_ Yri4,0-5)
Yo A,

Upper formula normalized R, from 0 to 1.

D,

(6)

2.3 Verification

In the previous sections, we have designed the
OCD-based histogram algorithm for rotation-invariant
search. Generally, image search tasks consist of the two
phases: search and verification, so two matching proce-
dures, Orientation code histogram (OH)[3] for rotation
angle estimation, and then Orientation code matching
(OCM)[1, 2] for precise matching, are used for the ver-
ification. These two matching procedures have been
proposed by ourselves for respective independent tasks
[1, 2, 3], here we design the combination of these proce-
dures in order to realize robust and rotation-invariant
image search.

OH consists of the histogram feature made from
pixel-wise orientation codes in the image and the
shifted intersection for evaluating histogram similar-
ity. Fig. 5 shows their examples, where in Fig. 5(a)
a template histogram is directly compared to an ob-
ject one, and in Fig. 5 the shifted version of the object
histogram. As shown in the figures, we can simultane-

ously evaluate their similarity and estimate the angle ngS
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Fig. 4: An example of OCDH.
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Fig. 5: Orientation code histogram.

of image rotation. In the shifted intersection, the fre-
quency in the Nth bin that reveals an irregular pixel
number helps the evaluation precision. Each dissimi-
larity measure corresponding to the shift k is calculated
directly based on bin-wise comparison, and then their
maximum D, can be used as component in the final
step.

For reliability of matching, we use another verifica-
tion by Orientation code matching (OCM) using a ro-
tated version of the template image by the estimated
rotation angle ¢. We need a different scheme d(c,, ¢p)
of calculating difference from Eq.2, which reflects circu-
larity of orientation, for example, d(14,2) and d(2, 14)
are the same as 4. The dissimilarity D3 based on pixel-
wise local evaluation of difference between correspond-
ing pixels is used for verification in this step.

3 Image search algorithm

By combination three procedures abovementioned,
we propose a robust and rotation-invariant image
search algorithm. In many applications of image search
in real industry, we are provided with larger images
called scene including some subimages corresponding
to the template image. For each target image of the
same size as the template drawn from the scene, we
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Fig. 6: Search experiment.

first calculate D; for candidate search. The candidate
images are selected by comparing D, with a threshold
level T'h, and their rotation angle estimations <13 are ob-
tained by use of OH. In the third step, after generating
rotated version of the template by ngS, D3 is computed.

Finally, we compute the overall dissimilarity which

is a weighted sum of dissimilarities in OCDH, OH and
OCM.

D = (aDy + 8Dy +vDs)/(a + 5+ ), (7)

where «, 3,7 are the weighting factors.

4 Experiments

For the experimental verification of the search algo-
rithm proposed above, we have conducted fundamen-
tal search experiment as shown in Fig. 6, in which the
white circle shows the detected target image.

Fig. 7 shows the distribution of the dissimilarities
around the searched position for Fig.6(a), when the
ring number n is 1,3,5,7, and dotted lines in these
figures represent the pruning threshold level T'h.

And Fig. 8 shows the pruning area, which are shown
by dark tone. We can find that accuracy of the search
increase as the number of rings n, because the pruning
area increase with the number.

Fig. 9 shows the computation cost for the code num-
ber N. We could find when we use OCDH, the compu-
tation cost doesn’t change with increasing number of
codes.

The dissimilarity profiles for Fig.6(b) are shown
in Fig.10. Fig.10(a) shows the dissimilarity surface
around the true position of the object in the scene.
Fig.10(b) shows the dissimilarity of each angle of im-

age rotation at the true position. When ¢ = 292.5[deg],
peak values correspond to the correct angle.
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Fig. 8: Pruning area for Fig.6(b).

5 Conclusins

A novel algorithm for fast, robust and rotation-
invariant template search has been proposed. It is
fundamentally based on orientation code difference his-
togram which can be designed by using histogramming
robust features and ring structures for fast computa-
tion. The effectiveness and efficiency of the proposed
algorithm could be experimentally verified with real
images. The proposed algorithm can be widely used
in real industry for product handling in many irregu-
lar conditions of illumination change and fluctuation of
positioning and rotation.
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Fig. 10: Dissimilarity profiles for Fig.6(b)



