
Fast Cross-sectional Display of Large Data Sets

V.J. Dercksen
Zuse Institute Berlin

dercksen@zib.de

S. Prohaska
Zuse Institute Berlin

prohaska@zib.de

H.-C. Hege
Zuse Institute Berlin

hege@zib.de

Abstract

One of the steps to reconstruct the 3-D geometry of bio-
logical objects from a stack of 2-D microscopic images, is
to align the individual slices with respect to each other.
Due to complex internal structures and imaging artifacts,
automatic methods do not always lead to reliable results.
Visual feedback consisting of sagittal and coronal
cross-sections is very useful to validate the alignment re-
sult. For data sets which are too large to fit into main
memory, this is an expensive operation as each slice in the
volume needs to be referenced, resulting in a lot of disk
I/O. Array data (including images) is conventionally
stored in row- or column-major order. This is however not
always optimal. In our application, we chose to store the
data in Z-order (Morton order), resulting in a significantly
improved performance.

1 Introduction

A topic that currently receives much interest in biology
and medicine is the creation of standard atlases [2, 8]. The
purpose of such atlases is to serve as a geometrical refer-
ence model into which different kinds of experimental
data can be integrated. The results of our work emerged in
a biologically oriented research project, which aims to
create a 4-D standard atlas of plant seeds. As a first step, a
3-D surface representation of the grain is to be created
from microscopic images taken from physical sections by
performing a number of image processing steps.

An essential step is the alignment of the section images.
In our alignment application this problem is treated as a
series of pair-wise registrations (see Fig. 1). Starting at the
bottom of the stack, two neighboring slices are aligned at
a time, by running an automatic registration method or
interactively. The user works towards the end of the stack,
always aligning the upper slice with the respect to the
lower one. Currently only rigid transformations are al-
lowed. Due to complex physiological structures and image
imperfections, automatic alignment methods do not al-
ways lead to satisfying results. Therefore, it is imperative
that the user is offered the opportunity to visually inspect
the result of such automatic methods and that she can con-
trol the alignment process interactively. The application
provides two windows for viewing the current alignment
status in planes parallel to the xz- and the yz-planes. Ex-
perts find these orthogonal views a very important feature
for validating the global alignment status and results.
Alignment errors easily propagate and deteriorate through
the volume. Therefore, much attention should be paid to
the accuracy. The user should be able to zoom in and look
at the image data at its full resolution.

Common data sets in the project consist of thousands of
high-resolution color images, leading to a total data set

size of roughly 10-30 GB. Such data sets do not fit into
the main memory of current desktop computers. In order
to be able to perform the alignment, the application only
loads the two slices that are currently being aligned into
memory. For slices which have been aligned, only the
transformation parameters remain resident; the image data
is removed from memory. This way, the whole volume
can be processed without the need to have the complete
data set in main memory.

However, in order to display the orthogonal views, we
need to extract a line from each slice in the volume. This
line has an arbitrary position and orientation, due to the
alignment transformation. This makes updating these win-
dows an expensive operation as lots of disk I/O may be
involved. The storage order for the data is an important
parameter for the performance. This paper shows that for
our application storing data on disk in Z-order (Morton
order) significantly improves the response time in com-
parison to conventional row-major layout.

2 M ethod

External memory algorithms and data structures [9] ad-
dress the problem of data exceeding the size of available
main memory. Out-of-core data storage on disk is required,
which uses block-wise I/O. The general goal is to redesign
the algorithms to run with minimal performance loss due
to this non-uniform cost for memory accesses. The first
step is to understand the data access patterns. Then, when
possible, the algorithm should be redesigned to maximize
data access locality, and to devise a data storage layout
consistent with the access pattern, thus amortizing the cost
of individual I/O operations over several memory access
operations.

2.1 Storing data as a space-filling curve

The most common way to store data in a
two-dimensional array of size N×M is in lexicographic
order, i.e. either row-major or column-major. The follow-
ing mappings are used to obtain the memory offset of
element (i,j) with respect to the start of the array, for re-
spectively row-major and column-major layout:

jMijiMjiNjiM cmrm),(),(

Accessing a row-major ordered array in a row-major
order requires an optimal low number of disk block I/Os.
However, data access in column-major order uses a worst
number of I/Os (vice versa for column-major layout).

Storing data in Z-order (also known as Morton order) [5,
7] offers a compromise between these extremes. It is not
biased towards a row-major or column-major access pat-

MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan

8-27

336

tern and it offers a great deal of spatial locality. The latter
enables algorithms to avoid page faults independently of
the actual page size. This cache-oblivious data layout [4]
optimizes block transfers at all levels in the memory hier-
archy at the same time.

A Z-curve is member of the class of space-filling curves,
i.e. functions mapping a multi-dimensional array to a
one-dimensional array [1, 3]. For the two-dimensional
case this mapping has the signature:

},,1{: 2NNNP

The index of point (i,j) of a two-dimensional array
stored in Z-order can be calculated as follows. Let the
bit-representations of i and j be i = ik...i3i2i1i0 and j =
jk...j3j2j1j0. Then the bit-representation of the Z-index Z(i,j)
corresponds to the alternating bits of i and j:

00112233),(jijijijijijiZ kk

The calculation of the Z-index is relatively expensive as
it involves bit operations which are not implemented in
hardware in today's CPUs. These costs can however be
avoided when dilated integer arithmetic is used. We refer
to [10] for a detailed discussion.

It may appear that Morton indexing wastes space when
used for large arrays that are not square and do not have
dimensions that are a power of two, because in those cases
the space needs to be padded. This waste however only
involves address space. In hierarchical memory only its
margin will ever be swapped into cache, so only very little
physical memory space is lost [10].

2.2 Approach

Our approach is characterized as follows. The data is
stored in 2D Z-ordered slices. We do not use 3D
Z-ordering because the alignment transformation of each
slice is independent. Therefore, spatial locality in the z
direction cannot be exploited.

By using the mmap system call (only available on Unix,
MapViewOfFile is the equivalent Windows function) we
leave all memory management to the operating system.
All slices are ‘mmapped’ to a virtual address range which
can be indexed through a pointer. This virtual address
range is usually much larger than the available physical
memory. The operating system performs the necessary
paging and disk I/O to transparently provide the data at
addresses accessed by the application. The virtual address
range is limited by the number of bits per address. A
64-bit operating system is required if the data size exceeds
approximately 1.5 GB. The whole geometry reconstruc-
tion pipeline is implemented in the visualization and data
analysis software Amira [6].

3 Results

Two experiments were performed in order to measure
the impact of Z-ordering the data on the update rates in
comparison to row-major layout. In practice, a common
scenario is to slice through the data in the sagittal (parallel
to yz-plane) or coronal (xz) direction in order to confirm
that the alignment result is satisfactory across the whole
volume. This is simulated in the experiments. Starting
with the Z-ordered stack of slices, the yz-plane is moved
through the volume with one voxel stepsize, starting at
x=0. This procedure is repeated for the coronal direction
and with the data stored in row-major layout. In the sec-
ond experiment, the same procedure was followed, but
with randomly transformed data. Each slice was rotated
around the image center with an arbitrary angle and sub-
sequently translated with a random vector (Tx,Ty) where Tx,
Ty [-256, 256].

The data set used for the experiments consisted of a
stack of 600 color (RGBA) images of size 2048×2048,
yielding a total size of 9.6 GB. The experiments were
performed on a Dual AMD Opteron 2 GHz 64-bit com-
puter running Linux 2.4.21-211-smp. One gigabyte of

Fig. 2. Ordering of the elements of a
4×4 matrix in a Z-curve.

Fig. 1. Alignment application showing two slices currently being aligned
(top left), sagittal (right) and coronal (bottom) cross-sections.

337

physical memory was assigned to the process of which 65
MB was used for the application. The operating system's
page size is 4 kB.

The result of the first experiment for the first 512 steps
is shown in Fig. 3 (top). We see from Table 1 that the
Z-ordered layout is approximately as fast as the optimal
case (row-major, coronal), but performs much better than
the worst case (row-major, sagittal) for untransformed
data. Given 4 kB page size and the data set dimensions
mentioned above, one page in row-major ordering corre-
sponds to a 1024×1 subvolume (half an image line). Thus,
for a sagittal cross-section, for each pixel to be displayed,
one entire page needs to be retrieved, which means that
half the volume needs to be loaded, although only 1/1024
is used. The amount of data exceeds the size of the main
memory, resulting in a lot of page swapping (thrashing).
This explains the long update times. Whenever a coronal
cross-section needs to be displayed however, only a
minimum number of pages needs to be loaded as all pixels
from a loaded page are used. When the physical memory
has been filled after approximately 200 slices, pages need
to be swapped out, leading to increased update times. This
also holds for the Z-ordered slices. With this layout, one
page corresponds to a 32×32 subvolume. Thus, in order to
display one line, 64 pages need to be loaded. For a whole
cross-sectional slice this amounts to 64×600×4 kB 150
MB. As the memory is large enough so that those pages
are not swapped out during the current screen update, the
data required to display the next 31 slices is directly
available. After this new disk I/O follows. This explains
the peaks at 32-slice intervals. For the randomly trans-
formed data, these effects disappear as the longer load
times are spread out over all slices. In this case storing
data in Z-order results in much faster update times.

4 Summary and Outlook

The experiments showed that a different data storage
order makes a significant difference in the overall update
rates of the orthogonal cross-sections. As the Z-order lay-
out is approximately as fast as the best access pattern of
the row-major storage, it offers a huge advantage over the
worst case. In practice it proves however still too slow to
provide interactive update rates. Current work focuses on
a hierarchical storage and display scheme. This way, a
subsampled version of the data can be retrieved and dis-
played very quickly. The resolution is gradually increased
as more data is loaded. This way the user can still view the
full-resolution cross-sections, without unnecessarily in-
terrupting the workflow.

Acknowledgements

Special thanks go to Dr. S. Gubatz, Institute of Plant
Genetics and Crop Plant Research, Gatersleben, Germany,
for providing the data set.

Table 1. Average update time (msec.) per pixel. Average
update time for one cross-section of the untransformed

data is given in parenthesis.

Untransformed data Transformed data

sagittal coronal sagittal coronal

Z-indexed 0.00160
(1.97s)

0.00109
(1.33s)

0.00606 0.00607

Row-major 0.213
(262s)

0.00161
(1.97s)

0.327 0.317

References

 [1] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer,

“Space-filling curves and their use in the design of geometric

data structures,” Theoretical Computer Science, vol. 181, no. 1,

pp. 3–15, 1997.

[2] A. Burger, R. A. Baldock, Y. Yang, A. Waterhouse, D.

Houghton, N. Burton, and D. Davidson, “The Edinburgh

mouse atlas and gene-expression database: A spatio-temporal

database for biological research,” in Proceedings of the 14th

International Conference on Scientific and Statistical Data-

base Management. IEEE Computer Society, 2002, p. 239.

[3] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M.

Thottethodi, “Nonlinear array layouts for hierarchical memory

systems,” in International Conference on Supercomputing,

1999, pp. 444–453.

[4] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,

“Cache-oblivious algorithms (extended abstract),” in Proc.

Symp. Found. Comp. Sci. IEEE, 1999, pp. 285–397.

[5] G. Morton, A computer oriented geodetic data base and a

new technique in file sequencing. Ottawa, Ontario, IBM Ltd.,

1966.

[6] D. Stalling, M. Westerhoff, and H.-C. Hege, “Amira: A

Highly Interactive System for Visual Data Analysis,” 2004, in:

C.D. Hansen and C.R. Johnson (eds.), The Visualization Hand-

book, Chapter 38, pp. 749–767, Elsevier, 2005.

[7] J. Thiyagalingam and P. Kelly, “Is morton layout competitive

for large two-dimensional arrays,” Euro-Par, pp. 280–288,

2002.

[8] A. Toga and P. Thompson, “Maps of the brain,” The Ana-

tomical Record, vol. 265, no. 2, pp. 37–53, 2001.

[9] J. S. Vitter, “External memory algorithms and data structures:

Dealing with massive data,” ACM Computing Surveys, vol. 33,

no. 2, pp. 209–271, 2001.

[10] D. S. Wise, “Ahnentafel indexing into morton-ordered ar-

rays, or matrix locality for free,” in Proceedings from the 6th

International Euro-Par Conference on Parallel Processing.

Springer-Verlag, 2000, pp. 774–783

338

Slicing through the untransformed data set

10

100

1000

10000

100000

1000000

0 50 100 150 200 250 300 350 400 450 500

Slice number

T
im
e
 (
m
s
)

sagittal, Z-indexed

coronal, Z-indexed

sagittal, row-major

coronal, row-major

Slicing through the randomly transformed data set

0,001

0,01

0,1

1

0 20 40 60 80 100 120

Slice number

T
im
e
 (
m
s
)

sagittal, Z-indexed

coronal, Z-indexed

sagittal, row-major

coronal, row-major

Fig. 3. The cross-sectional planes are moved along the x-axis (sagittal view) and the y-axis (coronal view). The time re-
quired to retrieve the data to update the orthogonal views is measured for Z-ordered data and for data stored in row-major

order. The experiments were performed for both untransformed data (top) and randomly transformed data (bottom).

339

