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Abstract 
 

We present a real-time image stabilization method, 

based on a 2D motion model and different levels of 
parallel implementation. This stabilization method is 

decomposed into three main parts. First, the image 

matching is determined by a feature-based technique. 
Then the motion between consecutive frames is estimated 

and filtered to extract the unwanted motion component. 
This component is finally used to correct (warp) the 

images, resulting in a stable sequence. To validate our 

stabilization approach in a real-time on-board system 
context, the algorithm was implemented and tested over 

different hardware platforms, allowing a performance 

evaluation in function of the adopted architecture. In this 
paper, we present some of the results concerning the 

parallel implementation using the SIMD ALTIVEC® 

instructions set and a symmetric multi-processor 
architecture (SMP). 

 

Keywords – 2D image stabilization, parallel 
implementation, real-time application, SIMD instructions, 

SMP architecture. 

 

1 - Introduction 
 

We are interested in the general study case of a camera 

rigidly mounted on a mobile system. This configuration is 

frequently found in tele-operation or aided-driving 

systems. The image sequence from this camera has 

informations about the movement of the vehicle in its 

environment. This movement may be divided in two 

components: one due to the driven motion of the vehicle, 

and a second component due to the parasite motion 

(unintended) suffered by the camera (bumpy ground, 

vibrations, etc.). Depending on its amplitude, this parasite 

component can strongly interfere in the visualization 

process and understanding of the image sequence, whether 

it is by a human observer/operator, or by an artificial 

vision system. 

In these situations, stabilizing the image sequence 

consists in eliminating or smoothing of the unintended 

motion component, while leaving the driven motion 

component intact. This process is called “on-demand” or 

“selective” stabilization. 

Although electronic image stabilization is widely 

explored, the architectural hardware approach allowing 

these systems to work in real-time, while respecting all the 

specificities of an on-board system, has received little 

attention. However, it’s important to simulate the 

algorithmical approach in realistic experimental 

conditions, specially timing conditions. To achieve this 

task, this kind of software needs a special hardware 

architecture, with parallel processing abilities. 

Our approach to deal with the “Algorithm-Architecture 

Adequation” is based on standard computational systems, 

also called “Commodity of the Shelf” (COTS). In the first 

stage of the work, we have verified the precision and 

robustness of our method in a sequential way. Then, in a 

second development stage, we did its real-time 

implementation using the parallel structures offered by the 

COTS systems. 

In section 2, we describe briefly the different existing 

stabilization methods, and also the processing blocs which 

generally compose them. In the 3rd section, we present a 

more detailed description of our stabilization approach. 

Section 4 presents the various hardware structures we 

have adopted. Section 5 explains how the algorithm was 

programmed to be executed in a parallel way. Finally in 

section 6, we present some results related to the 

implementation on the different hardware platforms. 

 

2- The Electronic Image Stabilization 
 

In the last years, several electronic image stabilization 

methods were proposed. These methods may be classified 

into three main families, according to the adopted motion 

model: 2D or planar methods [Mo97], 3D methods 
[Dur03] and 2,5D methods [Zhu98]. 

In fact, stabilization algorithms are composed of a 

sequence of processing blocs, which have different levels 

of complexity. Generally, three main processing stages are 

completed: image matching, global motion processing 

using the adopted model, and filtering/compensation of 

the unwanted motion, getting as result a stable sequence. 

 

2.1 - Image matching: We aim to calculate the 
movement in the 2D image plan of a real-world point or 

region. This movement is the 2D projection of the object’s 

3D motion in the observed scene. The most current ways 

to solve this problem are the optical flow extraction 

[Dur03] and feature-based approaches [Mo97]. 

Even if the optical flow extraction method (explained in 

[Horn81] and [Bar94]) has already been employed for 

image stabilization purposes, it is constraining because of 

its mathematical complexity (that may be relatively high). 

The assumption that the optical flow fields are a 3D 

motion fields projection is another constraint [Ve89]. 
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In this study, to process image matching we use 

detection and tracking of visual features. This method 

consists in two steps: first, searching in the image i for 
regions with strong visual information (e.g. strong 

luminance contrast, corners, edges, etc… ) called visual 

features, then identifying the same regions in the image 

i+1. Different tools for visual features detection are 

known, for instance, the “corner and edge detector” 

[Har88], the Laplacian operator and Harr's wavelets (the 

latter is presented in the next section). 

Once our features have been detected, we must be able 

to find them in another image. This task is done using a 

correlation method combined with a search strategy. 

Multi-resolution techniques allow a smaller processing 

time, through a “coarse-to-fine” approach. Several 

correlation methods may be employed, from the simplest 

ones being SSD & SAD [Pou02], to light-changes robust 

methods like normalized cross correlation [Tsai03].  
 

2.2 - Global motion estimation: Once image matching 

has been achieved we can proceed to the second stage of 

the stabilization processing chain: the estimation of the 

motion parameters, which are determined by the adopted 

motion model. 

2D models suppose a planar or almost planar scene. All 

points tracked in the preceding stage must lie in 

approximately the same distance from the camera. In this 

case, there are three parameters to estimate: two 

translations (horizontal and vertical) and one rotation 

around the camera optical axis. A fourth parameter may 

be included, to take into account scale changes caused by 

the camera forward/backward motion. 

3D models suppose that only rotational parasites are 

relevant. So, we have to estimate and correct 3D rotations 

to stabilize our image sequence. Knowing that camera 

rotation effects in images are independent from scene 

depth, we are able to estimate camera rotation parameters, 

using quaternions for instance [Mo97]. 
The 2.5 model presented in [Zhu98] presuppose the 

availability of preliminary information about camera 

motion leading us to estimate three global motion 

parameters, plus one independent parameter for each 

analysed point (tracked). This last one is a depth-related 

parameter. It allows us to work with structurally 

sophisticated scenes, without needing an advanced 3D 

model. 

 

2.3 - Motion compensation: Finally, after estimating 

the global motion between images, we’re going to 

compensate its unwanted or unintended component. This 

last processing stage is closely related to the application 

framework. The definition of “unwanted motion” depends 

entirely from the kind of “stability” required in each 

application. Several methods can achieve "full 

compensation" corresponding to static background scene, 

low-pass or inertial filtering [Zhu98] and low-order 

polynomial fitting for 3D rotations [Dur03]. 

 

3 - Our Stabilization M ethod 
 

General description: We have developed a stabilization 

method based on a 2D motion model, with visual features 

detection by Harr’s wavelets, applied over a transformed 

image (integral image). The search of matching points is 

done using a multi-resolution pyramidal strategy, with 

three resolution levels. A SSD (Sum of Squared 

Differences) operator is applied to measure the similarity 

between the searched feature and its potential matching. 

Once we get matching points between two successive 

images, we can estimate the 2D motion model parameters 

(_x, _y and θ__), using the Median Least Squares Method 

(MLSM). This technique is powerful as it limits the 

influence of incorrect matchings that could be found in the 

previous stage. Finally, the movement parameters are 

filtered and the obtained unwanted motion component is 

used to warp the respective image, stabilizing the video 

sequence (figure 2). 

 

Detailed description: From each image acquired by the 

camera (coded in 256 grey levels, image size adjusted by 

the user) three intermediary images are produced: one 

integral image, that will be used for visual features 

detection, and two sub-sampled images (½ and ¼ pixels), 

used to construct the multi-resolution searching pyramid. 

The integral image has in its (X, Y) position the sum of all 

pixels inside the rectangle delimited by i(0, 0) and i(X, Y), 
where i(x, y) is the original image. The calculation uses 

the formulae of recurrence given below, where ii(x, y) is 

the integral image and s(x, y) is an intermediate value 

(sum accumulated line by line on column x): 

 

s(x, 0) = i(x, 0) 
s(x, y) = s(x, y - 1) + i(x, y) 

ii(0, y) = s(0, y) 
ii(x, y) = ii(x - 1; y) + s(x, y) 

 

Harr's wavelet processing consists in the convolution 

between an image region (pattern) and one wavelet mask 

(figure 1). The obtained value represents the luminance 

gradient in a given direction. Wavelet’s processing is 

strongly accelerated when using an integral image. In this 

case, we can evaluate the sum of all pixels inside a 

rectangle of any size performing only 4 memory access 

and 3 sum operations [Vio01]. This property is also 

exploited for sub-sampled images creation. The mean 

value of pixels inside a square region (size 2x2 or 4x4) of 
the original image is obtained using the integral image. 

 

 
Figure 1.  Three examples of wavelet masks. 

 

Features are detected applying the wavelets over a pre-

defined zone. We use the upper half of the image to search 

features present in the horizon line. Normally, these 

regions are far away from the camera, enough to respect 

the planarity constraint of the 2D motion model. The 

detection zone is divided in n/3 vertical bands, n being the 
desired features number, set by the user. Three types of 

wavelets (vertical, horizontal and diagonal) are applied 

into each band, and the three regions presenting the
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Figure 2.  Synoptic scheme of the stabilization algorithm. 

 

biggest values of vertical, horizontal and diagonal 

gradients respectively are selected as features (figure 3). 

After the detection stage in image i, we seek the n 

corresponding features in image i+1. A "search window" 

with size 2Tx2T is defined around the position where a 

feature was detected. The SSD is calculated between each 

region inside this window and the feature selected in 

image i (figure 3). The region in image i+1 which 

minimizes the SSD is considered to be the match of the 

respective feature. This operation is repeated for each one 

of the n features detected in the preceding stage, giving us 

n matching points between two successive images.  

T is the largest feature displacement, between two 

images, that can be measured by the system. This 

configurable parameter directly influences processing 

time, searching time being linked (non linearly) to the 

distance T. This obvious bond between the largest 

displacement and the processing time is extremely 

important. The goal is to maximize the multiplication of 

the largest displacement (in pixels) by the number of 

images processed per second. This indicates the greatest 

speed of an object (in pixels per second) that the system 

can deal with. This way, the parameter T must be carefully 

set, taking into account its influence on the processing 

time. 

 

 
Figure 3.  Features detection (left) and tracking (right). 

 

To reduce the processing load, the search for matching 

features is executed in a multi-resolution approach. We 

start using a ¼ sub-sampled image, and looking for a SSD 

minimization inside a T/2 x T/2 window. This provides us 

with a first estimation for the matching point position. 

Based on this estimation, a second search process begins, 

using a ½ sub-sampled image and a 3x3 search window, 

placed around the first estimated position. A second 

estimation is thus obtained, more accurate than the first 

one. Finally, the final search stage is executed, using the 

original image and a sub-pixel precision of 1/8 pixel. A 

2x2 search window is analysed, and the value of regions 

lying between pixels is calculated through a bilinear 

interpolation of the adjacent pixels. 

Having found the n points matching between images i 
and i+1, we can estimate the 2D motion model parameters 

describing the movement from one image to other. This 

movement can be modelled by a homogeneous 

transformation matrix, composed of a rotation around the 

optical axis, vertical and horizontal translations. Three 

matrix parameters, related to each of these movements, 

must be estimated. The n point matching result is applied 

to the model, and the error is minimized using the Median 

Least Squares Method. 

The motion parameters obtained are added to those 

processed before, in order to find the total camera 

movement from the beginning of the video sequence. The 

found values are filtered by first-order linear filters. Each 

parameter has an independent filter, and the coefficients of 

all filters can be set by the user. This method allows us to 

have flexible stabilization intensity, adjustable to the 

application. We can also have different stabilization levels 

for translations and rotation. 

 The filtered values are used to get the inverse 

homogeneous transformation matrix that is applied to 

stabilize image i+1, bringing it back to a dynamic 

reference position (figure 4). This dynamic reference 

position tries to follow the commanded camera motion, 

respecting the passing band determined by the coefficients 

of the filter. 
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Figure 4.  Stabilization of a synthetic sequence. 

 

This stabilization method was tested with several real 

and synthetic incoming video sequences. The obtained 

precision for synthetic sequences (for which ground truth 

information is available) is very accurate. The motion 

parameters estimation between two successive images has 

mean error of 0.2 pixels for translations estimation, and 

0.05 degrees for rotations. 

The synthetic sequences were produced from a real 

road image (figure 3) and applying on it successive 2D 

rigid transformations in order to simulate the camera 

motion (figure 4). The camera motion model was 

extracted from a real sequence took in off-road conditions. 

 

4 – Hardware Presentation 
 

The processing chain descrided in section 3 was 

developped on a PC machine, featuring a AMD Athlon 

XP 1700 processor. After the evaluation and validation of 

algorithm’s efficiency, and in order to enable a real-time 

processing, the application was transferred toward Apple 

PowerMac machines, with shared memory biprocessor 

symmetric architectures. These machines have two 

processors Motorola MPC7455 (PowerG4) or two IBM 

PowerPC 970 (PowerG5). The operation system is 

MacOS X. The selected systems have some features 

enabling parallel processing, in two different levels: 

 

• Inside each processor, through super scalar 

processing devices, and with SIMD instructions set 

(Altivec). 

• With two parallel processors working simultaneously, 

sharing the machine’s memory (SMP architecture). 

 

4.1 - SIMD instructions set: This type of extension is 

found in several microprocessor families: MMX, SSE and 

SSE2 for Intel processors, 3DNOW! for AMD, MDMX 

for MIPS and VIS for SPARC processors. All these 

extensions of the instructions set are based on two 

principles: 

 

• first principle: it offers SIMD processing capacities, 

making possible to execute a logical or arithmetical 

operation on a multiple data set, with one instruction only. 

• second principle: it gives a set of instructions strongly 

inspired by DSP systems: satured arithmetics, cabled and 

type conversion operateurs. 

 

These instructions are applied on fixed size vectors 

(128 bits for Altivec), but the number of processed 

elements inside a vector can vary: four 32 bit, eight 16 bits 

or sixteen 8 bits elements.  

The utilisation of SIMD instructions implies a fine 

grain parallelization, recommended for repetitive 

operations. In this case, if the “operations/memory access” 

ratio is high enough, we can have almost linear speed-up 

factors (4, 8 or 16) when processing integer type of data, 

or even over-linear speed-up factors for floating point type 

of data. The performances obtained with this type of 

parallelization are discussed in [Fal04].  

However, the SIMD parallelization is limited to the 

framework of repetitive regular operations. Another 

inconvenient is that it imposes a low abstraction level, and 

it’s necessary to completely rewrite the software code for 

that tasks we hope to accelerate. 

 

4.2 - SMP architecture: The second level of 

parallelization lies on the exploration of two processors 

communicating via a shared memory. The use of this type 

of architecture results in a big grain parallelization, 

sharing the tasks or the data between both processors.  

The operation system (MacOS X) manages the 

executing tasks distribution in a “preemptive” way. It’s 

also conceived to share the tasks between both processors, 

making the parallel processing transparent for the user. 

However, in order to execute a same task over two 

processors simultaneously, we must split this task in 

lighter processes called “threads”. In our case, two threads 

are created and executed at the same time, enabling the 

system to distribute the work between the available 

processing resources. 

The creation of these threads is possible using the 

standard functions library “pthread”. This library defines 

some rules and tools for threads creation and fusion, 

including locking functions to manage tasks 

synchronization and mutual exclusion. 

Otherwise parallelization through SIMD instructions, 

this type of parallelization allows a high abstraction level, 

enabling a fast implementation without entirely rewriting 

the software code. 

 

5 – Parallel Implementation 
 

To propose a parallelization scheme exploiting to the 

best the hardware features introduced in the previous 

section and presenting good timing performances, we 

adopted the following methodology: the different 

processing stages of the sequential version were carefully 

analysed, according to two different criteria: 

“operations/memory access” ratio and processing data 

volume.  

Based on this analysis (table 1), we tried to concentrate 

the parallelization efforts on that stages where the speed 

gain may be potentially high. From this analysis, we can 

assume that step_1, step_2 and step_4 are the most 

processing consuming stages. The relative importance (in 

sequential processing time) of these stages in relation to 

the whole stabilization loop is shown in table 2. 

It’s noticeable that step_4 is the most time consuming 

task. However, when image size is increased, intermediary 

images creation (step_1 and step_2) becomes a time 

consuming task too. So, in order to obtain a noteworthy 

speed-up factor, it’s interesting to execute these three 

tasks with a parallel approach. 
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Table 1.  Decomposition and potential parallelism of 

each step of the algorithm. 

Processing Stage 
Intrinsic 

parallelism 

Operations

/memory 

access 

Processing 

data 

volume 

step_1:  

Integral Image 

Processing 

data low high 

step_2:  

Sub-sampled 

Images Processing 

tasks and 

data 
low high 

step_3:  

Features Detection 

tasks and 

data 
low low 

step_4:  

Features Matching 

tasks and 

data 
very high very high 

step_5:  

Motion Parameters 

Estimation 

sequential low low 

step_6:  

Motion Filtering 

and Correction 

sequential low very low 

 

Table 2.  Relative importance of the steps 1, 2 and 4. 

Processing Stage 
Image 

320x240 

Images 

640x480 

Images 

1280x960 

step_1 and step_2: 

Intermediary Images 

Processing 

3% 12% 24% 

step_4: 

 Features Matching 
93% 81% 65% 

 

5.1 - Parallel implementation on a shared memory 

biprocessor symmetric architecture: As explained 

before, these machines have two potential types of 

parallelism: data parallelism through vectorial instructions 

(Altivec library, SIMD mode), and data or task parallelism 

through biprocessor architecture (SMP mode). 

 

• The integral image creation (step_1) is processed in 

SMP mode. Image is divided in two equal horizontal 

bands, and the integral of each band is calculated by one 

processor. The image division causes a data dependence 

break. In consequence, an extra correction stage must be 

executed to achieve the complete integral image. 

 

• Sub-sampled images are calculated from the integral 

image (step_2), and are completely independent one from 

the other. So, a SMP mode is employed, with each 

processor being responsible for one sub-sampled image 

creation. 

 

• Features detection (step_3) is done in SMP mode, 

using the division in vertical bands, like explained in 

section 3. Each processor searchs the half of the desired 

features number (n/2), processing the half of the n/3 

vertical bands that were defined inside the detection zone. 

 

• In the sequential analysis (tables 1 and 2) we noticed 

that the features matching stage (step_4) is the most time 

consuming task. So, it brings two parallelism levels in its 

parallel implementation. Each processor searches the 

matching for that features it own has previously detected. 

So, each processor is therefore responsible for tracking the 

half of the desired features number (n/2).  

The second parallelism level is in the correlation 

computation. SSD results are obtained using Altivec 

SIMD instructions. We are able to process up to 16 pixels 

in only one operation and in this case, we have 16 times 

less operations to process. 

The SIMD function for SSD computation exists in two 

different versions: a simpler one, working with integer 

type data, and a more complex second version, dealing 

with floating-point numbers and bilinear interpolations. 

 

• After the tracking stage, matching points lists of both 

processors are merged, and the motion model parameters 

are estimated and then filtered (step_5 and step_6). These 

two last stages, not presenting a relevant complexity, are 

processed in sequential mode. 

 

Table 3.  Characteristics of the used machines. 

System 
[Arch_1] 
Athlon XP 

1700+ 

[Arch_2] 
PowerMac  

G4 

[Arch_3] 
PowerMac  

G5 

OS Windows XP Mac OS 10.3 Mac OS 10.3 

Compiler gcc 3.2 gcc 3.3 gcc 3.3 

µP number 1 2 2 

µProcessor Athlon XP MPC7455 PowerPC970 

Frequency 1,47 GHz 1 GHz 2 GHz 

Memory size 512 Mo 512 Mo 1Go 

Cache size 

L1 

L2 

L3 

 

128 Ko 

256 Ko 

 

64 Ko 

256 Ko 

1 Mo 

 

64 Ko 

512 Ko 

 

6 – Results 
 

The temporal performances of the stabilization 

algorithm were measured with 3 image sequences with 

sizes 320x240 (bench_1), 640x480 (bench_2) and 

1280x960 (bench_3). The software was configured to 

search n = 42 visual primitives at a maximal distance T 

near to 5% of image size: T = 15 pixels for bench_1, 30 
pixels for bench_2 and 60 pixels for bench_3. 

Characteristics of the machines used for tests are shown in 

table 3. In tables 4 and 5 we present the execution time of 

the parallelized functions and of the whole stabilization 

loop (step_1 to step_6).  
Measures correspond to the delay between two system 

time function calls, averaged over 1000 iterations of the 

stabilization loop. 

With 320x240 images (table 4), we obtain a very 

satisfying speed-up factor on step_4 (around 12), due to 

the SIMD mode, making possible to stabilize images in 

less than 10ms, using only one processor. 

SMP mode has a weak theoretical speed-up due to the 

number of processors (only 2). On step_4, speed-up is 
almost linear with approximately 1,9 for Arch_2 and 

Arch_3. For step_1 and step_2, it is higher on Arch_3 

(approximately 1,8) than on Arch_2 where it varies 

between 1,4 and 1,7. The processing time of step_3 

remains short in comparison with the whole stabilization 

loop. 

Even if SMP mode does not compensate the increasing 

complexity of step_1 and step_2 with image size 

augmentation, the final speed-up is at least 3 for Arch_2 
and 5 for Arch_3. 
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Table 4.  Temporal performances (in ms) for Arch_1, Arch_2, and Arch_3 with bench_1 parameters: image size 320x240, 

n = 42 primitives and T = 15 pixels. 

 

 

Table 5.  Temporal performances (in ms) for each implementation with Arch_2 and Arch_3. Left side shows 
results for bench_2 parameters (image size 640x480, n = 42 primitives and T = 30 pixels) and right side shows 

results for bench_3 parameters (image size 1280x960, n = 42 primitives and T = 60 pixels). 

 

 

7 – Conclusions and Future Work 
 

This paper presents an efficient method for 2D image 

stabilization with a precision near the 1/5th of pixel. 

Furthermore, the originality of features detection by Harr's 

wavelets using an integral image allows an important 

decreasing in the number of operations, which allied to the 

efforts of parallel processing gives very fast temporal 

performances. 

Very high speed-up factors were obtained with parallel 

processing, particularly using the SIMD instructions set. 

Processing time was drastically reduced, making possible 

to use this stabilization method as initial (pre-processing) 

stage in a chain of artificial vision algorithms. We’re able 

to deal with big format images (1280x960), in real-time, 

using only a commercial (COTS) system, instead of an 

expensive dedicated architecture. 

The parallel implementation of this stabilization 

method was led as pre-study for algorithms dedicated to 

the old films restoration (working with very big size 

images). Further optimizations are possible. Processing 

regions of interest corresponding to detection bands in 

step_1 and step_2, instead of processing whole images 

should reduce operations number and avoid the data 

dependency correction described in part 5.1. 
The implementation of an optimized version of this 

same stabilization method on a MIMD-DM architecture 

has already been led, and the obtained results will be 

shown in our next publication [Der05]. We used a cluster 

of 14 biprocessor PowerG5 machines, interconnected thru 

a 1 Gbit Ethernet network, and communicating via 

message passing, using the MPI library. 

This last implementation has been studied for a future 

implementation of this algorithm in an electronic chip, 

using a network of communicating homogeneous 

processors and SPMD approach. 
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Processing stage 
[Arch_1] 

sequential 

[Arch_2] 

sequential 

[Arch_2] 

SIMD 

[Arch_2] 

SIMD + SMP 

[Arch_3] 

sequential 

[Arch_3] 

SIMD 

[Arch_3] 

SIMD + SMP 

step_1 and step_2 1,4 2,1 2,1 1,5 0,9 0,9 0,5 

step_3 0,3 0,3 0,3 0,2 0,2 0,2 0,1 

step_4 33,2 56,7 4,7 2,5 31,1 2,6 1,4 

Total (step_1 to 6) 37,1 61,7 9,7 7,9 33,3 4,9 3,8 

Processing stage 
[Arch_2] 

sequential 

[Arch_2] 

SIMD + 

SMP 

[Arch_3] 

sequential 

[Arch_3] 

SIMD + 

SMP 

[Arch_2] 

sequential 

[Arch_2] 

SIMD + 

SMP 

[Arch_3] 

sequential 

[Arch_3] 

SIMD + 

SMP 

step_1 and step_2 9,7  5,8  3,8  2,1  40,3  25,1  15,8  8,8  

step_3 0,9  0,7  0,4  0,3 1,8  1,0  0,7  0,5  

step_4 66,8  4,0  37,8  2,0  108,2  8,0  83,2  2,8  

Total (step_1 to 6) 82,7  17,1  44,0  6,9  166,4  51,6  105,2  20,4  
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