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Abstract

Light fie ld re c o n stru c tio n is still m o stly lim ite d to sta tic

sc e n e s o r is o n ly a p p lic a b le to d y n a m ic sc e n e s u sin g so -

p histic a te d a n d c o stly ha rd w a re . In c o n tra st to tha t, o u r

c o n trib u tio n d e sc rib e s a sy ste m w hich a llo w s the re c o n -

stru c tio n o f a light fie ld o f a sc e n e in c lu d in g o n e o r m o re

rigid ly m o v in g o b je c ts u sin g o n ly o n e ha n d -he ld c a m e ra .

B y se p a ra tin g a u to m a tic a lly tra ck e d fe a tu re p o in ts in to d if-

fe re n t o b je c ts, stru c tu re -fro m -m o tio n a lgo rithm s c a n b e a p -

p lie d fo r e a ch o b je c t. T he ex te n sio n to lo n g im a ge se -

q u e n c e s is d o n e ite ra tiv e ly a n d the d y n a m ic light fie ld

is c re a te d b y m e rgin g the in d iv id u a l re c o n stru c tio n s a n d

q u a n tizin g the o b je c t p o se s in to d istin c t tim e ste p s.

F o r re n d e rin g p u rp o se s, a n ex te n sio n o f the U n stru c tu re d

Lu m igra p h is in tro d u c e d w hich u se s c o n fid e n c e m a p s to

m a rk sc e n e b a ckgro u n d , v isib le a n d in v isib le o b je c t p o se s.

1 In tro d u ctio n

The light field [8 ] a n d the lu m igra p h [4 ], resp ec tiv ely , a re

b y n o w w ell-esta b lished techn iq u es fo r im age-b a sed ren -

d erin g [1 , 5 ]. They a re esp ec ia lly w ell su ited fo r rep ro d u c -

in g im ages o f rea l sc en es o r o b jec ts. F o r this p u rp o se, the

light field m o d el u su a lly c o n sists o f a c o llec tio n o f im ages

o r a n im age seq u en ce o f the scen e fro m d ifferen t v iew in g

a n gles, a lo n g w ith the in trin sic a n d ex trin sic c a m era p a ra m -

eters fo r ea ch im age.

V ery o ften im age d a ta is a c q u ired b y m o u n tin g a c a li-

b ra ted c a m era o n a ga n try o r ro b o t a rm w hich is m o v ed

a ro u n d the o b jec t. H o w ev er, u sin g a ha n d -held c a m era

fo r rec o rd in g the req u ired im age seq u en ces is chea p er a n d

m o re flex ib le, a ltho u gh the c a m era p o se in fo rm a tio n w ill

n o t b e av a ila b le a s ea sily . S tru c tu re-fro m -m o tio n tech-

n iq u es, su ch a s fa c to riz a tio n m etho d s, a n d c a m era c a lib ra -

tio n hav e to b e a p p lied to o b ta in the c a m era p a ra m eters [5 ].

S o fa r, the light field w a s m o stly restric ted to the rep ro -

d u c tio n o f sta tic sc en es. A llo w in g m o v em en t o r d efo rm a -

tio n o f o b jec ts in the scen e a d d s a lo t o f c o m p lex ity to the

ta sk s o f a c q u irin g, sto rin g a n d ren d erin g im ages fro m the

light field . L ight field s w hich a re v a ria b le in tim e a re o ften

referred to a s d y n a m ic light field s.

∗This w o rk w a s fu n d ed b y the G erm a n R esea rch F o u n d a tio n (D F G )

u n d er gra n t S F B 6 0 3 /TP C 2 . O n ly the a u tho rs a re resp o n sib le fo r the

c o n ten t.

In this c o n trib u tio n w e a d d ress the p ro b lem o f d y n a m ic

light field a c q u isitio n c o n sid erin g o n ly o n e ha n d -held c a m -

era , o n e o r m o re rigid b u t p erm a n en tly m o v in g o b jec ts in

the scen e, a n d lo n g im age seq u en ces o f m o re tha n 100

fra m es. In a d d itio n to tha t, w e p ro p o se a n ew ren d erin g

a lgo rithm fo r the resu ltin g light field w hich a llo w s u sin g a ll

in p u t im ages sim u lta n eo u sly fo r ren d erin g ea ch tim e step .

O b jec t segm en ta tio n , c a m era p o se a n d sc en e rec o n stru c -

tio n a re d o n e u sin g a m u ltib o d y segm en ta tio n a lgo rithm b y

K a n a ta n i [6 , 7 ] a n d a fa c to riz a tio n [9 ] fo r ea ch o b jec t. S in c e

these a lgo rithm s a re o n ly a p p lic a b le fo r ra ther sho rt im age

seq u en ces, w e in c o rp o ra te the m u ltib o d y segm en ta tio n in to

the m etho d p ro p o sed b y H eigl [5 ], w hich ex ten d s a n in i-

tia l rec o n stru c tio n o f a sho rt su b seq u en ce to lo n g im age se-

q u en ces.

In o rd er to c rea te a c o m p lete d y n a m ic light field m o d el

the in d ep en d en t rec o n stru c tio n s fo r ea ch o b jec t a re regis-

tered w ith ea ch o ther a n d “ tim e” step s o f o b jec t m o tio n a re

id en tified b y a v ec to r q u a n tiz a tio n o f the rela tiv e c a m era p o -

sitio n s. D ifferen t tim e step s o f the fin a l light field a re ren -

d ered b y c rea tin g m a sk m a tric es, the so -c a lled c o n fid e n c e

m a p s, w hich su p p ress the u se o f im age a rea s sho w in g the

o b jec t a t w ro n g tim e step s.

The a p p lic a tio n s o f light field s ra n ge fro m a u gm en ted re-

a lity to m ed ic a l im agin g. In en d o sc o p ic , m in im a lly in v a -

siv e su rgery [1 2 ] fo r in sta n c e, a light field o f the o p era tio n

site a llo w s the p hy sic ia n to v iew the a rea o f in terest fro m

a n y v iew p o in t w itho u t stra in to the p a tien t. B u t sin c e the

su rro u n d in gs d u rin g a n o p era tio n a re n o t sta tic , m o d elin g

b y d y n a m ic light field s w o u ld b e a p p ro p ria te. The m etho d

p ro p o sed here c o u ld , e.g., b e u sed to m o d el the m o v em en t

o f su rgic a l in stru m en ts fo r light field rec o n stru c tio n d u rin g

a n o p era tio n .

O n ly few a rtic les hav e b een p u b lished o n the to p ic o f

d y n a m ic light field s. The L ight F ield V id eo C a m era [1 3 ]

c a p tu res m o v in g scen es fro m d ifferen t v iew in g d irec tio n s

u sin g 12 8 sy n chro n iz ed c a m era s. The ren d erin g o f d y -

n a m ic light field s fro m this d a ta w a s d esc rib ed in [3 ]. A

m etho d fo r rec o n stru c tin g a d y n a m ic light field fro m im -

ages o f a sin gle c a m era is in tro d u c ed in [1 0 ]. H ere, d if-

feren t m o v em en t step s a re rec o rd ed o n e a fter a n o ther a n d

registered w ith ea ch o ther a fterw a rd s. In [1 ], the tim e step s

fo r a d y n a m ic light field a re d efin ed m a n u a lly a n d ren d ered

sim ila rly to [1 0 ].

W e w ill d em o n stra te the a p p lic a b ility o f o u r m etho d o n
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Figure 1: Two images of the crawler example sequence.
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Figure 2: Features tracked on the crawler object.

three example image sequences of 139 to 200 frames, each

showing a different moving object in front of a static back-

ground. The proposed combination of new and known tech-

niques covers for the first time the complete process of re-

constructing a dynamic, multibody light field from a single

input sequence, as well as its visualization.

2 Multibody Calibration

The starting point of the dynamic light field reconstruction

is an image sequence of a scene containing at least one per-

manently moving but rigid object in front of a static back-

ground. Two images of an example for such a sequence are

shown in Fig. 1, a toy crawler which moves in a circle on

a desk, while the camera is moved back and forth continu-

ously. In the following, the background will be considered

as another rigid object, since no distinction can be made a

priori between foreground and background. Thus, we as-

sume k objects, where k ≥ 2.

The following processing steps require the knowledge of

point feature correspondences between the images of the

sequence. The gradient-based feature detection and track-

ing method employed here is described in detail in [14].

The average number of frames in which a feature is

tracked may be quite low, possibly as few as 10 to 20. As

an example, the features found on the moving object in the

crawler sequence are plotted in Fig. 2. U sually, none of the

features is visible throughout the whole sequence. For seg-

mentation, i. e., assigning each feature to one object, and

reconstruction using factorization, the features have to be

visible in every frame, so that this approach is only practi-

cable for rather short subsequences. Therefore, the succes-

Find initial subsequence with max. number of

features

Segment features into k objects

Factorize initial subsequence for each object

Get next adjacent frame fi

Segment new features in fi, initialized with

known features

Triangulate features using known projections

E stimate camera parameters for each object

U N TIL every frame calibrated

Figure 3: Structure chart of the multibody calibration for

long image sequences

sive approach illustrated in the structure chart in Fig. 3 is

applied and will be explained in the following sections.

2.1 S e g m entation and F actorization

For both the segmentation and the factorization process a

measurement matrix W is created by concatenating the im-

age coordinates of all feature points. As already mentioned,

this requires that all feature points are visible in all images.

Therefore, the first step is to automatically find the subse-

quence with the highest number of visible features.

The segmentation is based on the method by Costeira [2]

for factorizing scenes with independently moving objects.

Two extensions of this algorithm, proposed by Kanatani

[6, 7], significantly improve the robustness with respect to

noise and are applied here1. Segmentation and factorization

are performed in two separate, consecutive steps.

The underlying principle of the segmentation algorithm

is that W is of rank 4 in the perspective case for a static

3-D scene, and each additional moving 3-D object increases

the rank of W by up to 4. The objects are identified by

separating the subspaces of W and thus the features it is

composed of. For detailed descriptions of the algorithm we

refer to the literature [2, 6, 7].

Once the feature points on each object have been identi-

fied, the 3-D structure and camera positions relative to each

object are determined. For this purpose, a paraperspective

factorization method [9] is applied to each set of features,

followed by an iterative non-linear optimization step opti-

mizing in turn the camera pose and 3-D point positions [5].

2.2 L ong Im ag e S e q uences

As shown in the structure chart in Fig. 3, three main steps

after determining the next frame are performed iteratively

to calibrate the remaining unknown cameras. First, all fea-

tures are selected which are visible in at least Fp calibrated

frames and which were not considered for the factoriza-

tion or the preceding iteration, where Fp is smaller than

the number of frames for the initial factorization. These are

also segmented using the above segmentation algorithm. In

order to increase the underlying amount of data, and thus

robustness, the already assigned features are used as well,

1The source code was kindly provided by the authors at

http://www.suri.it.okayama-u.ac.jp/e-program.html
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(a) (b)

Figure 4: (a) Reconstruction results of the background of

the crawler scene. (b) Reconstruction and quantization of

the object into four time steps.

and the algorithm is initialized with the known segmenta-

tion to decrease the computational cost.

Secondly, the newly found and segmented points are tri-

angulated using the camera parameters of the respective ob-

jects. Features with a back-projection error above a thresh-

old are discarded as either erroneous or misclassified.

In the last step the camera pose of the new frame f i is es-

timated using the now known 3-D feature points. Every fea-

ture in fi which already has a 3-D correspondence is used

to estimate the correct camera parameters by minimizing

their back-projection error. The parameters are initialized

with the parameters of the preceding camera. As before,

the estimation has to be done for each object separately.

These three steps are repeated for all remaining uncali-

brated frames. The next frame is chosen alternatingly to be

the one before or after the already calibrated subsequence.

The results of such a calibration can be seen in Figures 4(a)

and 4(b) for the background and the independently moving

toy crawler of the sequence of Fig. 1. The reconstructed

feature points on the respective objects are visualized as

white dots, while the camera poses relative to the back-

ground or the crawler, respectively, are depicted as pyra-

mids with their base towards the viewing direction.

3 Light Field Reconstruction and Rendering

In an earlier contribution on dynamic light fields [10], the

visualization was based on the assumption that different

time steps in scene motion are available. In our case, time

steps are equivalent to similar states of object motion. Thus,

the goal of reconstruction is to identify and combine images

with similar object positions and orientations to individual

time steps.

3.1 T ime Step Identification

After calibration, the camera motion relative to each object

is available and can be used to infer the motion of the object.

This camera motion not only depends on the motion of the

object, but it also includes the motion of the camera itself.

In order to get the real motion relative to the object, the

camera’s own motion has to be eliminated.

Since no common world coordinate system is available,

the reconstruction for each object will differ from the oth-

ers by an arbitrary rotation, translation and scaling. This

issue has not been addressed in [2], but it was encountered

likewise for the dynamic light fields in [10].

The object containing the most features is selected as the

background of the scene. Assuming that the poses of the

first background camera P0,1 and the first camera of any

object Pi,1 are the same, any object camera can be trans-

formed to the background coordinate system:

P
′

i,j = Pi,jM
−1

i,1 M0,1 , (1)

where Mi,j is a 4 × 4 extrinsic camera parameter matrix

for object i and camera j. It is built from the rotation R i,j

and translation ti,j of the respective camera. A camera pa-

rameter matrix Pi,j is thus composed of

Pi,j = (Kj |03)Mi,j =

= (Kj |03)

(

R
T
i,j −R

T
i,jti,j

0
T
3

1

)

.
(2)

Kj is the 3×3 intrinsic camera parametermatrix for camera

j.

The inverse transformation is applied to each (homoge-

neous) 3-D object point. The remaining scale factor is de-

termined by assuming that the 3-D points should be at the

same distance from the cameras. Therefore, the scaling is

calculated as the ratio between the distances of the centers

of mass of the 3-D point clouds of object and background,

and again applied to each camera and point.

Both background and object reconstruction are now in

the same coordinate system, although the transformation

may not be exact since the scaling is calculated only by

a heuristic measure. An accurate calculation of the scale

factor will be subject to future work. The object-relative

camera movement is now calculated as the transformation

between the positions of two corresponding cameras M0,j

and M
′

i,j , transformed back to the common coordinate sys-

tem by M0,1:

P
′′

i,j = (Kj |03)M0,1M
−1

0,j M
′

i,j . (3)

From these corrected camera matrices the similar object

positions are calculated by applying a vector quantizer to

the camera position vectors. The desired number of time

steps can be specified and the camera positions are grouped

around a codebook vector for each step, minimizing the

intra-class distance. An example for the resulting quanti-

zation is shown in Fig. 4(b) for the crawler sequence. Here,

the camera positions are subdivided into four time steps.

3.2 Rendering

By separating the resulting time steps into one static light

field each, the rendering can be done again like in [10] by

enabling the renderer to switch back and forth between the

light fields. However, this approach has the drawback that

only a fraction of the images can be used for each time step.

The new rendering technique we propose is based on the

Unstructured Lumigraph [1], but it is applicable to other

renderers as well. So-called confidence maps are calculated

for each image in the sequence and for each time step. They

contain information about which parts of an image are to be

used for which time step. The confidence map may contain

three different values, e. g., 0 for the foreground object if it

is invisible, 2 if it is visible, and 1 for all background pixels.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Two images each of the phone (a, c) and head

(b, d) example sequences. (e) P hone and (f) head object

reconstruction and quantization of six time steps each.

Whether a pixel in an image belongs to the background or

the object is determined by the following procedure: The

segmented feature points in each image are connected by

a mesh using delaunay triangulation [11]. A triangle is as-

signed to a moving object if at least one of its vertices be-

longs to the object. Otherwise it is allocated to the back-

ground.

During rendering, contributions from different images

are weighted according to these confidence values. Thus, if

several images contribute to a rendered patch, pixels from

the object at a wrong time step are discarded, while pixels

from the object at the correct time step will always overlay

background pixels from other images. This ensures that for

rendering the background, all images can be used for every

time step, and a selection of images is only necessary for

the moving object. Rendering different time steps is done

by switching from one set of confidence maps to another.

4 Experiments

As examples for the reconstruction of long image se-

quences, three real sequences showing different moving ob-

jects in front of a static background were chosen. Beside

the crawler sequence of Fig. 1, the examples show a ro-

tating telephone arm (Figures 5(a) and 5(c)) and a person

turning his head from left to right (Figures 5(b) and 5(d)).

A prerequisite for the reconstruction to work is that enough

features are found on each object. The examples were se-

lected accordingly.

The total number of frames in the sequences ranged from

139 to 200, but the initial factorization was done on 10

sequence frames feat. bg feat. obj corr. obj

crawler 139 2117 1150 16.7

phone 145 2198 234 51.8

head 200 1172 718 88.1

Table 1: Some statistics on the example sequences: total

number of frames (2nd column), total number of features

on background (3rd column) and object (4th column), and

average number of point correspondences per feature found

on the object (5th column).

(crawler) to 35 (head) frames only, depending on the size

of the moving object. The total number of features assigned

to background and object can be seen in Table 1, as well as

the average number of point correspondences used on the

object. Each feature had to be visible in at least 8 frames to

be used for 3-D reconstruction.

The final result of the object reconstructions for each se-

quence are depicted in Figures 4(b), 5(e) and 5(f), respec-

tively. Here, the final camera path is visible which results

from deducting the camera’s own motion. The quantization

by camera position, as described in Sect. 3.1, is illustrated

by different shades for each “time” step.

Figure 6 shows four images rendered from the resulting

light fields for each of the three sequences, using the ren-

dering method introduced in Sect. 3.2. For all four images

of each sequence, the camera pose was the same, which

is reflected by the identical background in each image, but

the object was rendered for four different time steps, and is

thus at different positions. Note that the camera poses for

the rendered images were not part of the original sequence,

but chosen arbitrarily. For the crawler light field the image

sequence was subdivided into eight time steps, while the

other two light fields consist of six time steps each.

5 Conclusion

In this contribution we proposed a solution for reconstruct-

ing a dynamic light field of a scene including at least one

rigidly moving object. Prior to factorizing an initial sub-

sequence for the background and each moving object sep-

arately, a motion segmentation algorithm is applied to au-

tomatically acquired features. The calibration is extended

to the whole sequence by alternatingly triangulating and

segmenting additional features and calibrating new frames.

For the final light field the resulting 3-D reconstructions for

each object are merged into a common coordinate system

and a common scaling is approximated. The camera posi-

tions are then divided into different “time steps” of similar

camera positions. Rendering is done by masking the mov-

ing objects in the original images that belong to time steps

which are currently not observed using confidence maps,

while the static background is used from every image.

Although this method already constitutes an improve-

ment over an earlier system for dynamic light field recon-

struction [10], many further developments are possible. The

rendering quality is still limited by the precision of the ob-

ject segmentation in the original images. However, many

improved segmentation algorithms exist which are better
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Figure 6: Rendered images for four different time steps of the crawler (top row), phone (middle row) and head sequence

(bottom row), seen from the same camera position.

suitable for this task than the currently used one. In recon-

struction, the next step will be to consider cases of disrupted

motion, disappearing and new objects. Calculating the true

scale factor between the different reconstructions of each

object remains an open problem.
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