
Scene change detection using Multi-class Support Vector Machine

w ith MP E G encoding inform ation

Mickael Pic and Takio Kurita

N euroscience R esearch Institute

N ational Institute of A dv anced Industrial S cience and Tech nolog y

Tsukub a A IS T C entral 2 , U m ezono 1 -1 -1 , Tsukub a 3 0 5 -8 5 6 1 , J ap an

1 Introduction

As the amount of digital video is increasing, efficient
w ay s of searching and annotating it according to its
content are req uired. T he fi rst step tow ard video in-
dex ing is to detect scene changes. A scene is usually
defi ned as a seq uence of video frames w ith no signif-
icant changes b etw een frames in terms of their visual
content. T he simp lest scene cut is rep resented b y a
camera b reak , that is, an ab rup t transition due to an
editing cut. M ore sop histicated changes are gradual
transitions such as dissolves, w ip es, fade-ins, fade-outs,
resulting from chromatic, sp atial, and comb ined edits.

In this p ap er w e address the p rob lem of ab rup t
transition recognition or, b riefl y , video-cut detec-
tion. M ost techniq ues of video segmentation w ork s
on uncomp ressed data and rely on features such as
color histograms ([1]), track ing of feature p oints ([2 ]),
sub seq uent frame diff erences ([3 ]), and motion fea-
tures ([4 ]). S ome algorithms have also b een devel-
op ed to w ork directly on M P E G -encoded video se-
q uences ([5 ][6 ]), and have imp roved the comp utational
efficiency , video comp ression is also generally done
w ith signal-p rocessing techniq ues cap ab le of deriving
useful features, for ex amp le, motion vectors in M P E G .

W hile techniq ues that w ork in the uncomp ressed
domain usually achieve high rob ustness, techniq ues
that w ork directly on M P E G -encoded video are usually
faster. W e p rop ose an original method comb ining the
rob ustness of the uncomp ressed domain to the sp eed of
M P E G -encoded video and p resent the fi rst ex p erimen-
tal results. Almost all these methods rely on a thresh-
old selected b y a human op erator. B ecause it is not al-
w ay s easy to manually fi nd a good threshold w hen sev-
eral features are used, the op erator uses a near op timal
threshold. S ometimes, neural netw ork s ([7 ]) are used
to determine these thresholds. W hile they can b etter
fi nd relations b etw een the features, they can b e slow to
train. W e are p rop osing an algorithm that can ex tract
seven features from M P E G -encoded information, three
features from D C comp onents and four features from
B -frame macrob lock s. W e use these features to train a
M ulti-class S up p ort V ector M achine ([8 ]) to automat-
ically design a classifi er for detecting video cuts.

T he organization of the p ap er is as follow s: S ec-
tion 2 p rovides a b rief descrip tion of the M P E G video-
comp ression standard, w hile S ection 3 describ es details

on the p rop osed algorithm to detect cuts. S ection 4
p resents the results of an ex p erimental study.

2 M P E G V ideo E ncoding

T o b egin, w e w ill b riefl y describ e the relevant p arts of
the M P E G video-comp ression standard ([9 ]). T he sy n-
tax for M P E G video defi nes three main ty p es of coded
p ictures organized into seq uences of group s of p ictures
(G O P ) in M P E G video streams. T he Intra-coded p ic-
tures (I-frames) are ob tained w ithout ex p loitating the
temp oral redundancy rep resenting the reference frame
for other frames in the G O P . T he P redicted p ictures
(P -frames) are forw ard-motion-comp ensated encoded
p ictures, starting from the p revious I- or P -frame. And
the B i-directionally p redicted p ictures (B -frames) are
forw ard- and b ack w ard-motion-comp ensated encoded
p ictures, starting from the p revious or follow ing I or
P frames. F igure 1 outlines a ty p ical G O P structure
(15 -frame seq uence of IB B P B B P B B P B B P B B ) that is
used in coding video at a rate of 3 0 frames/ sec.

F igure 1: T y p ical M P E G group of p ictures (G O P )

A video frame is divided into a seq uence of non-
overlap p ing macrob lock s. E ach macrob lock consist of
six 8 x 8 p ix el b lock s, four luminance (Y ) b lock s, and
tw o chrominance (C b C r) b lock s. E ach macrob lock is
intra- or inter-coded. An I-frame is comp letely intra-
coded.

S ince the coding for an I-frame does not refer to
any other video frames, it can b e decoded indep en-
dently and thus p rovides an entry p oint for fast ran-
dom access to the comp ressed video. E ach P frame
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is predictively encoded with reference to its previous
anchor frame, the previous I- or P-frame. Each mac-
roblock in the P-frame, is search for a local region in
the anchor frame that is a good match in terms of the
difference in intensity. If a good match is found, the
macroblock is represented by a motion vector to the
position of the match. This is normally known as en-
coding with forward motion compensation and we shall
refer to this type of encoded macroblock as an inter-

coded macroblock . If a good match cannot be found,
the macroblock is intra-coded like in the I-frames. An
inter-coded macroblock also has better compression
gain compared to intra-coded macroblocks. We ex-
pect that a small change in content between a P frame
and its anchor frame will result in more well matched
macroblocks in the anchor frame and hence fewer mac-
roblocks requiring intra-coding. To achieve further
compression, B-frames are Bi-directionally predictively
encoded with forward and/or backward motion com-
pensation references for their nearest past and/or fu-
ture I- and/or P-frames. Since B-frames are not used
as a reference for coding other frames, they can accom-
modate more distortion and thus higher compression
gain compared to I- or P-frames.

3 Cut Detection Algorithm

The method we propose sequentially reads the encoded
information from each B-frame of a MPEG movie.
This information is preprocessed before being used in a
Multi-class Support Vector Machine ([8]). The MSVM
gives the final category for the frame.

3.1 MPEG-encoded informa tion p re-

p rocessing

Our algorithm only uses information from the B-frames
because they achieve the highest compression and they
convey more useful information than I- and P- frames.
J unehwa and Boon-L ock ([10]), described a method of
extracting a small representation of the full frame from
compressed information using DC coefficients, not re-
quiring the frame to be fully uncompressed, thus saving
a great deal of computational time. This compressed
frame is called the D C image, and is represented in the
YU V color space. In our algorithm, we extract three
features from consecutive D C images.

The measure of difference between consecutive D C

images is important in detecting cuts. Mean squared
error (MSE) is often used as the measure of difference
between two images. H owever, MSE is affected by ob-
jects moving in the frame or the abrupt appearance of
captions. To reduce the influence these intrusions have,
we used the robust mean squared error (R MSE) [11] in
our algorithm. Suppose the Y components of consec-

utive D C images are denoted as Y
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In th e ro b u st m e a n sq u a re d e rro r (R M S E ), o u tlie rs
(p ix e ls c o rre sp o n d in g to m o v in g o b je c ts) a re d e te c te d
b y a c c u ra te ly e stim a tin g th e sta n d a rd d e v ia tio n a n d
th e m e a n sq u a re d e rro r is c o m p u te d o n ly w ith in lie rs.
O u tlie rs b e tw e e n th e c o n se c u tiv e Y c o m p o n e n ts o f DC

im a ges Y (1) a n d Y (2) c a n b e d e te c te d w ith th e fo llo w -
in g p ro c e d u re [11]:

1. C o m p u te th e m e d ia n o f sq u a re e rro rs ε2 = m ed ε2
i
.

2. C o m p u te th e e stim a te d sta n d a rd d e v ia tio n a s σ =
1.4 8 26 (1 + 5

M−1 )
√

ε2.

3 . D e te rm in e p ix e ls i a s o u tlie rs if
√

ε2
i
≥ 2.5σ.

T h e n , th e ro b u st m e a n sq u a re d e rro r o f th e Y c o m p o -
n e n t is o b ta in e d b y c a lc u la tin g th e m e a n sq u a re d e rro r
o f th e in lie rs. W e h a v e c a lle d th is fe a tu re R M S E Y .

C o lo r in fo rm a tio n is a lso im p o rta n t in m e a su rin g
th e d iff e re n c e b e tw e e n c o n se c u tiv e im a g e s. T h e se c -
o n d a n d th ird fe a tu re s a re d e fi n e d u sin g th e U a n d V
c o m p o n e n ts o f c o n se c u tiv e DC im a ges . T o e x tra c t th e
U fe a tu re (C H U ) a n d V fe a tu re (C H V ), th e su m o f
th e a b so lu te d iff e re n c e in v a lu e s in c o rre sp o n d in g b in s
o f h isto g ra m s is u se d . T h is is a lso c a lle d bin to bin

d iff eren ce ([1]). G iv e n tw o h isto g ra m s h1 a n d h2

f d b2b =
1

2N

∑

i

a bs (h1[i] − h2[i]) (2)

w h e re N is th e n u m b e r o f p ix e ls in a fra m e a n d fa c to r 2
e n su re s th a t e v e n fo r c o m p le te ly n o n -in te rse c tin g h is-
to g ra m s, th e d iff e re n c e in fra m e s is le ss th a n o r e q u a l
to 1.0 .

In a d d itio n to th e fe a tu re s e x tra c te d fro m DC im -

a ges , fo u r m o re fe a tu re s a re e x tra c te d fro m B fra m e
m a c ro b lo ck s. W h e n a m o v ie is e n c o d e d in M P E G fo r-
m a t, B fra m e s m a c ro b lo ck s c a n b e c o d e d u sin g fo u r
d iff e re n t ty p e s ([9 ]). F o r e a ch m a c ro b lo ck , th e e n -
c o d e r c a lc u la te s th e b e st m o tio n -c o m p e n sa te d m a c -
ro b lo ck fo r fo rw a rd -m o tio n c o m p e n sa tio n (F W D ). It
th e n c a lc u la te s th e b e st m o tio n c o m p e n sa te d m a c -
ro b lo ck fo r b a ck w a rd m o tio n c o m p e n sa tio n (B W D )
w ith a sim ila r m e th o d . F in a lly , it a v e ra g e s th e tw o
m o tio n -c o m p e n sa te d m a c ro b lo ck s to p ro d u c e th e in -
te rp o la te d m a c ro b lo ck (IP ). It th e n se le c ts th e o n e
w ith th e b e st p e rfo rm a n c e . A fte r th is ste p , if th e m o -
tio n c o m p e n sa te d m a c ro b lo ck is o n ly slig h tly b e tte r
th a n th e u n c o m p e n sa te d m a c ro b lo ck , th e n th e m a c -
ro b lo ck is c o d e d in in tra -m o d e (IA ). W h ile re a d in g th e
m a c ro b lo ck in fo rm a tio n fro m th e m o v ie , th e sy ste m
c o u n ts h o w m a n y m a c ro b lo ck s b e lo n g to e a ch c la ss.

T h e fe a tu re s R M S E Y , C H U , a n d C H V a re c o m -
p u te d fo r e v e ry fra m e o f th e m o v ie , b e c a u se w e n e e d
to c o m p a re th e c u rre n t B fra m e a n d p re v io u s I-, P - o r
B -fra m e c o lo r in fo rm a tio n . T h e fe a tu re s F W D , B W D ,
IP , a n d IA o n th e o th e r h a n d a re o n ly c o m p u te d fo r B
fra m e s.
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3.2 Multi-class Support Vector Ma-

ch in e

We propose an algorithm for detecting shot bound-
aries with the Multi-class Support Vector Machine
MSVM ([8]). The MSVM is an extension of the origi-
nal binary classification Support Vector Machine SVM
algorithm.

Because we are only analyz ing B frames, and cuts
may occur on any frame (I, P or B), we defined three
B-frame type classes: N o Cut frames (N C), Before Cut
frames (BC), and On Cut frames (OC). The N C oc-
curs when there is no cut on the current B-frame, or
the next frame (I, P or B). The BC occurs when-ever
a cut appear on the next frame, or the second-next
frame when the cut is on a I- or P-frame, following
the current frame. For example, in the frame sequence
BBP, if a cut occurs on the P-frame, the previous two
B frames will be labeled BC. The OC occurs when the
current frame is a cut frame (first frame of a new se-
quence). We do not define an After Cut frame because
very often the MPEG-encoding information indicates
an important change just before a cut happens, and
less often after a cut.

The classifier was trained using a polynomial K ernel

k(x, x′) = (γ < x, x′ > +c)2 (3)

and sub-sampled features of full video sequences in-
cluding scene cuts, and camera motion (the videos are
described in Section 4). We trained several MSVM
with different parameter settings to find the near op-
timal setting.

By analyz ing the results of the classifier, the algo-
rithm can determine the cut-frame. In the following
MPEG sequence: PBBPBB, three situations can oc-
cur. There is no cut, and the classifier will give the
following result (only B-frames are analyzed) - N C N C
- N C N C. There is a cut on one of the B-frames -
BC OC - N C N C. The BC indicate that the following
frame is a cut, and this is confirmed by the OC. There
is a cut on a non B-frame - BC BC - N C N C. In that
case, usually the previous two B-frames are classified
as BC. Only the following non B-frame is set as the
cut-frame.

4 E x perim en tal result

N umerous shot-boundaries detection algorithms have
been proposed and evaluated using different video se-
quences making it diffi cult to compare their perfor-
mance. We captured three long videos for our ex-
periments in MPEG2 320 x 240 pixel format at 30
frames per second, from television sources. Table 1
lists the information from the three videos used in the
experiments. All videos include fast camera motion
(panning, tilting, zooming), fl ash and special effects.
They also have several kinds of scene cuts, from a
simple camera brake to sophisticated fading and wip-
ing. As we focused on camera breaks, we ruled out so-
phisticated scene cuts from the experiments. N ews 1

and N ews 2 were TV news, with commercial breaks.
K ao 06-10 was a TV drama with commercial breaks.
All frames for all movies were manually labeled ac-
cording to the three classes used by the classifiers: N o
Cut frames, Before Cut frames, and On Cut frames.
Because the proposed algorithm works directly on the
MPEG compressed domain, it can achieve real-time
performance. In most papers, experiments are done
on very short movie, a few thousand frames or seconds
at most, and few scene cuts or camera motions. To
show the effectiveness of our method, we choose to use
a very long video with a lot of scene cuts, and camera
movements.

Table 1: Video information
Video F rames S h ot bou ndaries Du ration

N ews 1 26,895 105 14 mins
N ews 2 17 ,361 58 9 mins
K ao 06-10 102,323 991 52 mins

The MSVM was trained using 13,400 frames sub-
sampled from N ews 1 and N ews 2 including scene
breaks, camera motion, and fl ash.

Many algorithms have been proposed to detect scene
cuts, using different video sequences for evaluation. To
provide a comparison, we tested three well-known al-
gorithms against three of our own methods using the
videos we captured. For the well-known algorithms,
we programmed the MSE as defined by Eq 1, a Color
Histogram (CH) ([1]) with bin to bin difference as de-
fined by Eq 2, and Rapid Scene Analysis on Com-
pressed Video (RSACV) ([5]). For our own methods,
we programmed the RMSE defined in Section 3.1, a
simply modified Categorization And Regression Tree
(CART) ([12]), and the MSVM.

Prior to use MSVM as classifier for our proposed
algorithm, we tried a simpler classifier Classification
And Regression Tree CART as presented by Breiman
et al.[12] to the problem of detecting shot boundaries
using the seven features extracted from the MPEG
compressed video. Using the same terminology for la-
beling the frames as MSVM uses, CART was trained
to classify the frames as N o Cut frames (N C), Before
Cut frames (BC), and On Cut frames (OC). We kept
CART to show the differences between the two classi-
fiers.

To improve the ability to generalize of the con-
structed decision tree, we introduced a small modifica-
tion to the CART training algorithm. When the best
split of a node has been chosen while growing a tree,
the data that belong to the feature chosen as the split
are sorted, and the value of the split is taken as the
middle value between the best split and the next value.
This makes the tree robust against small variations in
feature value that can appear in the test samples and
not in the training samples.

The CART classifier was trained using the same data
set as the MSVM classifier.

We present the results of each feature taken sepa-
rately, the result of RSACV, our first method using a
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modified CART, and our new proposed method using
MSVM in the following tables.

Table 2: Experimental results for News 1
Method Miss detect False detect T otal

MSE 10 47 57
CH 4 39 43
RSACV 10 51 61

RMSE 14 20 34
CART 0 0 0
MSVM 2 8 10

Table 3: Experimental results for News 2
Method Miss detect False detect T otal

MSE 14 63 77
CH 8 34 42
RSACV 2 55 57

RMSE 8 1 9
CART 0 1 1
MSVM 4 4 8

We can see from Table 4 that the proposed method
achieved better results than the other methods, and
features taken separately. Yet in Table 2 and Table 3
CART appear to achieve better result than MSVM. As
stated before, the training set has been created from
News 1 and News 2 samples. So testing with News 1
and News 2 can be consider as recall test, and testing
with Kao 06-10 is a generalization test. The improve-
ment on Kao 06-10 derives from the MSVM’s ability
to automatically combine features to separate classes.
The proposed modification to the CART to select the
value for the best split at each node of the tree makes
the constructed tree robust against variations in fea-
ture values that do not appear in the training sam-
ples. While the recall process yields better results for
the CART, the MSVM achieves better generalization.
Even if CART appear to have similar performance than
MSVM, our goal is to create a classifier than can learn
from examples to generalize and achieve good results
at shot boundaries detection.

Table 4: Experimental results for Kao 06-10
Method Miss detect False detect T otal

MSE 110 114 224
CH 88 283 371
RSACV 59 39 98

RMSE 59 90 149
CART 44 58 102
MSVM 38 48 86
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