
New Macroblock Engine Architecture for Video Processing

Trio ADIONO
1
, Dani Fitriyanto

1
, Akhmad Mulyanto

1
, Sumek W isayataksin

2
, Kazumasa Takeichi

2
,

Dongju Li
2
, Tati R. Mengko

1
, Hiroaki KUNIEDA

2

1) Department of Electrical Engineering, Bandung Institute of Technology, Indonesia
2) Department of Communications and Integrated Systems, Tokyo Institute of Technology, Japan

email : tadiono@ paume.itb.ac.id

Abstract

A new engine for macro-block based video processing is

introduced in this paper. This engine increases efficiency,

flexibility and extensibility of data generation for macro-

block based video processing system. In the proposed

system, a new specific instruction sets that can access data

in pixel, line, block, macro-block or frame within a clock

cycle are introduced. Thus, efficiency of video processing

system is increased. Additionally, the programmability of

data access enables dynamic scheduling for various video

processing applications. It extremely reduces processing

time while reducing the control complexity as well. This

architecture also has scalability for different size of image

and has expandability for new macro-block based

processor. Implementation to typical video compression

application shows high performance result and easy

system implementation.

1. Introduction

Most video processing algorithm involves processing a

pixel with its neighbor pixels. In video compression

algorithm, in order to exploit temporal and spatial

redundancy, most of algorithms do processing to groups

of pixels, called block and macro-block processing.

 In conventional system, dedicated hardware based

system implementation is usually designed for each

macro-block processing unit, such as DCT, IDCT, ME,

MC, IQ and Q. This approach requires large number of

logic gates which increases design complexity. Moreover,

dedicated design has very small flexibility for design

scalability and expandability.

On the other hand, general purpose based video coding

implementation requires computation overhead for macro-

block based memory data accessed. Consequently, high

clock frequency and high power consumption are

required. These are not suitable for typical video

processing application that needs low power features, and

large computation times.

To overcome problems mentioned above, we introduce

a new engine which is functioning to generate data for

many types of image processing modules. This proposed

engine provides easy access to memory data inside the

frame store memory of video processing systems.

Processor can access data in macro-block, block or pixel.

Due to its programmability features, we can also

program processing element function according to

required processing that may vary according to the content

of video image data. Thus, we can employ dynamic

scheduling for video coding system, based on video

content that may increase computation efficiency.

2. Macroblock Engine System Architecture

In order to obtain high performance system

architecture, the addressing of frame store memory

method is firstly optimized to provide easy access of

memory data. Then instruction sets are design to enable

data read/write in various ways. Finally, considering both

addressing method and instruction sets, the system

architecture is designed.

2.1 Addressing method

To simplify and increase address generation speed, we

arrange data inside memory in macro-block based system.

We use pixel position inside block (p_x and p_y), block

number (b_xand b_y), macro-block number (mb_x and

mb_y) and frame number (fr) as address value, as

illustrated in Figure 2.1 and Figure 2.2. As a result, we

can directly map real macro-block address using its

position parameters (fr, mb_y, mb_x, b_y, b_x, p_y, p_x)

as shown in Figure 2.2.

Figure 2.1 Pixel and Block position inside the macro-

block addressing

 MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan

3-13

68

Figure 2.2 Memory address structure

2.2 Instruction sets

This address generator functionality is defined by sets

of instructions which are specially designed for this

processor. By utilizing this instruction, we can provide

data for processing element according to its input-output

data scheme.

Utilized Instructions can be categorized as memory

access, address setting, jump, and control as shown in

Table 2.1.

Table 2.1 Instruction Sets of Macroblock Engine.

Instruction name Function Description
IRD_LINE(obj_operand) Access Read Data in

horizontal mode

IW R_LINE(obj_operand) Access Write Data in

horizontal mode

IRD_COLUM N(obj_operand) Access Read Data in

vertical mode

IW R_COLUM N(obj_operand) Access Write Data in

vertical mode

IINC_ADD(obj_operand) Address

Setting

Increase add

number

ISET_ADD(obj_operand) Address

Setting

Set Offset Address

ISET_M V(mvx, mvy) Address

Setting

Set MV

IJUM P_FLAG(Add) Jump Jump to “Add”

Address when Flag

is ‘1’

IJUM P(Add, JCount) Jump Jump to “Add”

Address when Flag

is ‘1’ for “JCount”

IWAIT(n) Control

ISET_M ODULE(module_no) Control Enable the

indicated module

ISTOP Control Stop Running

2.3 M emory read/write instructions

This type of instruction read/write data from frame

store memory according to operand value. The direction

of data reading/writing within a block of data can be

horizontal or vertical, depends on “LINE” or

“COLUMN“ type of instruction.

The value of operand, as shown in Table 2.2 shows

value to be read. For example, to read a macro-block of

data, we may write instruction as follows:

IRD_LINE(0; 0,2,7; 0,7);

Table 2.2 Operand Value

Obj_operand Fno, mbx, bx, px, mby, by, py

2.4 Address setting instructions

This type of instruction manipulates address value that

will be used as offset address by Memory Access

Instruction. ISET_ADD will set current address to its

operand value. Therefore we can set the reference

position of data to be read inside a frame.

IINC_ADD increases current address according to its

operand value. Increment is done independently among

p_x, b_x, and mb_x. Second complement representation

is used for operand representation. Therefore, using this

instruction we can also decrease the address value. Unlike

ISET_ADD, this instruction is designed for relative

address set according to current position. Usually it is

useful for address setting inside loop condition.

Unlike the other instructions, ISET_MV is only used

for Motion Compensation operation that commonly used

in video compression application. Using proposed

architecture, mv process can be implemented by shifting

address in x and y direction according to operand value of

ISET_MV.

2.5 Control instructions

ISTOP Terminate the program execution.

ISET_MODULE (module_no) Select active module.

We assigned specific module_no to each processing

hardware. This instruction must be executed before read

data for each module. In DCT/IDCT Function

ISET_MODULE also include information inter/intra MB

and quantization/inverse quantization value.

IWAIT(n) Delay for n clks before executing the next

instruction. It is usually used between read and write data

from module. n is bit [15..0]. Currently DCT and IDCT

use this instruction.

2.6 Jump instructions

IJUMPNZ(N) This instruction will change program

counter flag based on flagJMP register value. If the

flagJMP=1 then PC=PC-N, otherwise PC=PC+1.

By this instruction, we increase the default reference

address in regAX and regAY which were set by

ISET_ADD instruction. The increment is done

independently among p_x, b_x, and mb_x. Increment is

also used to avoid overflow from each bus.

2.7 General architecture

In order to generate addressing according to

macroblock based memory map, we design an AGU unit

as described in Figure 2.3. In this system AGU generate

addressing by executing instruction in Program Memory

(ROM). Inside program memory, there are several

instructions. The executed instruction will be determined

by Program Counter (PC) which point out to the address

of Program Memory. According to this instruction, AGU

will perform loop operation in Loop Counter block. The

address generated by loop counter will be added with

offset value in register A of ALU_X and ALU_Y. Finally,

both x and y address will be mixed again by multiplexer to

perform real address.

69

Figure 2.3 AGU Unit Design

2.7.1 AGU controller

AGU Controller has a function to fetch and execute the

instruction. It works within 3 stages, Instruction Fetch,

Decoding and Execute.

In Instruction Fetch stage, executed instruction is

transferred from program memory into instruction register,

according to address pointed by Program Counter.

In Decoding Stage, all AGU registers are set according

to the instruction. For example, we program aguloop

registers when IRD_LINE or IRD_COLUMN instruction.

Except ISTOP instruction, the value of PGC is also in

increase in this stage.

In Execution stage, the real address value is generated

by aguloop unit. At the beginning of Execute stage, reset

signal is generated.

2.7.2 Loop generator

According to our memory map structure and supported

instruction sets, we construct cascade structure of counter.

The counters are arranged from pixel counter to

macroblock counter as shown in Figure 2.4. Only pixel

counter the arrangement may be exchange between x and

y. It depends on executed instruction, whether horizontally

or vertically read. If horizontal (IRD_LINE), the pixel x

counter comes first, otherwise pixel y will.

When execution stage starts, it starts counting from

zero until delta value, which is assigned by operand 1 and

operand 2 of instruction. Therefore we can generate

address for pixel, line, block, macroblock or frame access.

Figure 2.4Aguloop Architecture

2.7.3 ALUX and ALUY

Since the generated address by aguloop module always

refer to 0 position, we need randomly access in line,

block, macroblock or frame. For that kind of purpose, we

create an offset value which is store in regAX and regAY

(differentiated between x and y). By adding these

registers value and address generated by aguloop, we can

access the data randomly.

Figure 2.5 ALUX and ALUY Architecture.

3. Application in Video Coding

In order to verify system functionality, we develop

macroblock-engine system using FPGA as shown in

Figure 3.1. This system includes camera as data

acquisition, and NTSC display.

Figure 3.1 Macroblock Engine System using FPGA

3.1 Application to DCT and IDCT

For verification of proposed architecture, we implement

proposed system to DCT processing as shown in Figure

3.2. This processing is typically used in many video

compression applications.

For this processing, following shows program structure

for DCT processing. This program is implemented for a

block processing. For frame processing, we must perform

loop operation.

70

Figure 3.2 Application of Macroblock Engine for

DCT/IDCT Transformer

For DCT processing we introduce parallel processing

architecture for DCT coefficient computation. Eight

processors are used to perform parallel computation. In

order to enhance multiplication operation, LUT based

multiplication is used to compute the multiplication of

input data and coefficient of DCT.

3.2 Experimental Result

Implementation of DCT/IDCT processing shows that

system can effectively perform processing with simple

engine programming, as follows:

ISET_MODULE(0x01)

 100: IJUMP_FLAG(200,Flag)

 IRD_COLUMN(Py=7,Px=7)

 IWAIT(74)

 IWR_LINE_DCT(Py=3,Px=7)

 200: ISHIFT_BLK

 IJNZ(100,6)

 ISET_MODULE(0x00)

 ISTOP

Figure 3.3 shows the processing of DCT/IDCT for

quantize value with quantize value 2. We can learn that

the reconstructed image is similar to input data. Applying

larger quantize value, as shown in Figure 3.4, will produce

larger image noise but small number of image coefficient

which may result in small encoding bits.

Figure 3.3 Reconstructed of video stream Miss America

applying Quantize Value = 2

Figure 3.4 Reconstructed of video stream Miss

America applying Quantize Value = 10

4. Conclusion

A new macro-block engine architecture which can

randomly access data inside memory is introduced in this

paper. Special instructions are design to provide data for

massive parallel video processor. Addressing method and

type of instructions used in this processor will decrease

system complexity and increase system scalability that

results in efficient VLSI implementation of the system.

Programmability features also increase design reusability

which may gain small design size and low design

complexity. Shared control signal among processing

element also result in easy of interfacing, reduce design

time and easy for design verification and debugging.

References

[1] C. Honsawek, K. Ito, T. Ohtsuka, T. Isshiki, D. Li, T.

Adiono, H. Kunieda, "System-MSPA design of H.263+

Video Encoder LSI for Face Focused Videotelephony,"

Proc. of IEEE APCCAS, No.00EX394, pp.152-155, China,

Dec.4-6,2000.

[2] D. Li, T. Adiono, C. Honsawek, and H. Kunieda,

"Multimedia LSI Design Based on Window-MSPA

Architecture," ISPACS'99 Thailand, Pucket, Dec.8-10,1999

(Invited Paper).

[3] C. Honsawek, K. Ito, T. Ohtsuka, T. Isshiki, D. Li, T.

Adiono, H. Kunieda, "System-MSPA Design of H.263+

Video Encoder/Decoder LSI for Videotelephony

Application," IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, Vol.

E84-A Num. 11 pp.2614-2622 (2001.11)

[4] Dongju Li and Hiroaki Kunieda, "Memory Sharing

Processor Array (MSPA) Architecture," IEICE Transactions

on Fundamentals of Electronics, Communications and

Computer Sciences, Special Section on VLSI Design and

CAD Algorithms Vol. E79-A, No. 12 Pp.2086-2096, Dec.

1996

71

