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Abstract 

A new engine for macro-block based video processing is 

introduced in this paper. This engine increases efficiency, 

flexibility and extensibility of data generation for macro-

block based video processing system.  In the proposed 

system, a new specific instruction sets that can access data 

in pixel, line, block, macro-block or frame within a clock 

cycle are introduced. Thus, efficiency of video processing 

system is increased.  Additionally, the programmability of 

data access enables dynamic scheduling for various video 

processing applications.  It extremely reduces processing 

time while reducing the control complexity as well. This 

architecture also has scalability for different size of image 

and has expandability for new macro-block based 

processor.  Implementation to typical video compression 

application shows high performance result and easy 

system implementation. 

1. Introduction 

Most video processing algorithm involves processing a 

pixel with its neighbor pixels. In video compression 

algorithm, in order to exploit temporal and spatial 

redundancy, most of algorithms do processing to groups 

of pixels, called block and macro-block processing.   

  In conventional system, dedicated hardware based 

system implementation is usually designed for each 

macro-block processing unit, such as DCT, IDCT, ME, 

MC, IQ and Q.  This approach requires large number of 

logic gates which increases design complexity.  Moreover, 

dedicated design has very small flexibility for design 

scalability and expandability.  

On the other hand, general purpose based video coding 

implementation requires computation overhead for macro-

block based memory data accessed.  Consequently, high 

clock frequency and high power consumption are 

required.   These are not suitable for typical video 

processing application that needs low power features, and 

large computation times. 

To overcome problems mentioned above, we introduce 

a new engine which is functioning to generate data for 

many types of image processing modules.  This proposed 

engine provides easy access to memory data inside the 

frame store memory of video processing systems. 

Processor can access data in macro-block, block or pixel. 

Due to its programmability features, we can also 

program processing element function according to 

required processing that may vary according to the content 

of video image data.  Thus, we can employ dynamic 

scheduling for video coding system, based on video 

content that may increase computation efficiency.  

2. Macroblock Engine System Architecture 

In order to obtain high performance system 

architecture, the addressing of frame store memory 

method is firstly optimized to provide easy access of 

memory data.  Then instruction sets are design to enable 

data read/write in various ways.  Finally, considering both 

addressing method and instruction sets, the system 

architecture is designed.  

2.1 Addressing method 

To simplify and increase address generation speed, we 

arrange data inside memory in macro-block based system.  

We use pixel position inside block (p_x and p_y), block 

number (b_xand b_y), macro-block number (mb_x and 

mb_y) and frame number (fr) as address value, as 

illustrated in Figure 2.1 and Figure 2.2.  As a result, we 

can directly map real macro-block address using its 

position parameters (fr, mb_y, mb_x, b_y, b_x, p_y, p_x) 

as shown in Figure 2.2. 

Figure 2.1 Pixel and Block position inside the macro-

block addressing 
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Figure 2.2 Memory address structure 

2.2 Instruction sets 

This address generator functionality is defined by sets 

of instructions which are specially designed for this 

processor.  By utilizing this instruction, we can provide 

data for processing element according to its input-output 

data scheme.  

Utilized Instructions can be categorized as memory 

access, address setting, jump, and control as shown in 

Table 2.1. 

Table 2.1 Instruction Sets of Macroblock Engine. 

Instruction name Function Description 
IRD_LINE(obj_operand) Access Read Data in 

horizontal mode 

IW R_LINE(obj_operand) Access Write Data in 

horizontal mode 

IRD_COLUM N(obj_operand) Access Read Data in 

vertical mode 

IW R_COLUM N(obj_operand) Access Write Data in 

vertical mode 

IINC_ADD(obj_operand) Address 

Setting 

Increase add 

number 

ISET_ADD(obj_operand) Address 

Setting 

Set Offset  Address

ISET_M V(mvx, mvy) Address 

Setting 

Set MV

IJUM P_FLAG(Add) Jump Jump to “Add” 

Address when Flag 

is ‘1’ 

IJUM P(Add, JCount) Jump Jump to “Add” 

Address when Flag 

is ‘1’ for “JCount” 

IWAIT(n) Control 

ISET_M ODULE(module_no) Control Enable the 

indicated module 

ISTOP Control Stop Running 

2.3 M emory read/write instructions 

This type of instruction read/write data from frame 

store memory according to operand value.  The direction 

of data reading/writing within a block of data can be 

horizontal or vertical, depends on “LINE” or 

“COLUMN“ type of instruction. 

The value of operand, as shown in Table 2.2 shows 

value to be read.  For example, to read a macro-block of 

data, we may write instruction as follows:  

IRD_LINE(0; 0,2,7; 0,7); 

Table 2.2 Operand Value 

Obj_operand Fno, mbx, bx, px, mby, by, py

2.4 Address setting instructions 

This type of instruction manipulates address value that 

will be used as offset address by Memory Access 

Instruction.  ISET_ADD will set current address to its 

operand value.  Therefore we can set the reference 

position of data to be read inside a frame. 

IINC_ADD increases current address according to its 

operand value.  Increment is done independently among 

p_x, b_x, and mb_x.  Second complement representation 

is used for operand representation. Therefore, using this 

instruction we can also decrease the address value.  Unlike 

ISET_ADD, this instruction is designed for relative 

address set according to current position.  Usually it is 

useful for address setting inside loop condition. 

Unlike the other instructions, ISET_MV is only used 

for Motion Compensation operation that commonly used 

in video compression application. Using proposed 

architecture, mv process can be implemented by shifting 

address in x and y direction according to operand value of 

ISET_MV.  

2.5 Control instructions 

ISTOP Terminate the program execution. 

ISET_MODULE (module_no) Select active module.  

We assigned specific module_no to each processing 

hardware.  This instruction must be executed before read 

data for each module. In DCT/IDCT Function 

ISET_MODULE also include information inter/intra MB 

and quantization/inverse quantization value. 

IWAIT(n) Delay for n clks before executing the next 

instruction.  It is usually used between read and write data 

from module.  n is bit [15..0].  Currently DCT and IDCT 

use this instruction.  

2.6 Jump instructions 

IJUMPNZ(N) This instruction will change program 

counter flag based on flagJMP register value. If the 

flagJMP=1 then PC=PC-N, otherwise PC=PC+1.  

By this instruction, we increase the default reference 

address in regAX and regAY which were set by 

ISET_ADD instruction. The increment is done 

independently among p_x, b_x, and mb_x.  Increment is 

also used to avoid overflow from each bus.  

2.7 General architecture 

In order to generate addressing according to 

macroblock based memory map, we design an AGU unit 

as described in Figure 2.3.  In this system AGU generate 

addressing by executing instruction in Program Memory 

(ROM).  Inside program memory, there are several 

instructions. The executed instruction will be determined 

by Program Counter (PC) which point out to the address 

of Program Memory.  According to this instruction, AGU 

will perform loop operation in Loop Counter block.  The 

address generated by loop counter will be added with 

offset value in register A of ALU_X and ALU_Y.   Finally, 

both x and y address will be mixed again by multiplexer to 

perform real address.  
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Figure 2.3 AGU Unit Design 

2.7.1 AGU controller 

AGU Controller has a function to fetch and execute the 

instruction.   It works within 3 stages, Instruction Fetch, 

Decoding and Execute. 

In Instruction Fetch stage, executed instruction is 

transferred from program memory into instruction register, 

according to address pointed by Program Counter.

In Decoding Stage, all AGU registers are set according 

to the instruction.  For example, we program aguloop 

registers when IRD_LINE or IRD_COLUMN instruction.  

Except ISTOP instruction, the value of PGC is also in 

increase in this stage.

In Execution stage, the real address value is generated 

by aguloop unit.  At the beginning of Execute stage, reset 

signal is generated. 

2.7.2 Loop generator 

According to our memory map structure and supported 

instruction sets, we construct cascade structure of counter.  

The counters are arranged from pixel counter to 

macroblock counter as shown in Figure 2.4.  Only pixel 

counter the arrangement may be exchange between x and 

y. It depends on executed instruction, whether horizontally 

or vertically read.  If horizontal (IRD_LINE), the pixel x 

counter comes first, otherwise pixel y will. 

When execution stage starts, it starts counting from 

zero until delta value, which is assigned by operand 1 and 

operand 2 of instruction.  Therefore we can generate 

address for pixel, line, block, macroblock or frame access.  

Figure 2.4Aguloop Architecture 

2.7.3 ALUX and ALUY 

Since the generated address by aguloop module always 

refer to 0 position, we need randomly access in line, 

block, macroblock or frame.  For that kind of purpose, we 

create an offset value which is store in regAX and regAY 

(differentiated between x and y).  By adding these 

registers value and address generated by aguloop, we can 

access the data randomly.   

Figure 2.5 ALUX and ALUY Architecture. 

3. Application in Video Coding  

In order to verify system functionality, we develop 

macroblock-engine system using FPGA as shown in 

Figure 3.1.  This system includes camera as data 

acquisition, and NTSC display.  

Figure 3.1 Macroblock Engine System using FPGA 

3.1 Application to DCT and IDCT 

For verification of proposed architecture, we implement 

proposed system to DCT processing as shown in Figure 

3.2.  This processing is typically used in many video 

compression applications. 

For this processing, following shows program structure 

for DCT processing.  This program is implemented for a 

block processing.  For frame processing, we must perform 

loop operation. 
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Figure 3.2 Application of Macroblock Engine for 

DCT/IDCT Transformer 

For DCT processing we introduce parallel processing 

architecture for DCT coefficient computation. Eight 

processors are used to perform parallel computation.  In 

order to enhance multiplication operation, LUT based 

multiplication is used to compute the multiplication of 

input data and coefficient of DCT. 

3.2 Experimental Result 

Implementation of DCT/IDCT processing shows that 

system can effectively perform processing with simple 

engine programming, as follows: 

ISET_MODULE(0x01) 

    100: IJUMP_FLAG(200,Flag) 

            IRD_COLUMN(Py=7,Px=7) 

            IWAIT(74) 

            IWR_LINE_DCT(Py=3,Px=7) 

   200:  ISHIFT_BLK 

            IJNZ(100,6) 

            ISET_MODULE(0x00) 

            ISTOP 

Figure 3.3 shows the processing of DCT/IDCT for 

quantize value with quantize value 2.  We can learn that 

the reconstructed image is similar to input data.  Applying 

larger quantize value, as shown in Figure 3.4, will produce 

larger image noise but small number of image coefficient 

which may result in small encoding bits.  

Figure 3.3 Reconstructed of video stream Miss America 

applying Quantize Value = 2 

Figure 3.4 Reconstructed of video stream Miss 

America applying Quantize Value = 10

4. Conclusion 

A new macro-block engine architecture which can 

randomly access data inside memory is introduced in this 

paper. Special instructions are design to provide data for 

massive parallel video processor.  Addressing method and 

type of instructions used in this processor will decrease 

system complexity and increase system scalability that 

results in efficient VLSI implementation of the system.   

Programmability features also increase design reusability 

which may gain small design size and low design 

complexity.  Shared control signal among processing 

element also result in easy of interfacing, reduce design 

time and easy for design verification and debugging.  
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