MVA2005 IAPR Conference on Machine VIsion Applications, May 16-18, 2005 Tsukuba Science City, Japan

3-4

Generating a Triangular Mesh Adapted
for Shape Reconstruction from Images

Atsutada Nakatsuji*

Yasuyuki Sugaya'

Kenichi Kanatanif

* System Solutions Division II, NEC Engineering, Ltd.
1 Department of Computer Science, Okayama University

Abstract

In reconstructing 3-D from images based on feature
points, one usually defines a triangular mesh that has these
feature points as vertices and displays the scene as a poly-
hedron. If the scene itself is a polyhedron, however, some
of the displayed edges may be inconsistent with the true
shape. This paper presents a new technique for automati-
cally detecting and eliminating such inconsistencies by us-
ing a special template.

1. Introduction

One of the most important issues of 3-D reconstruc-
tion from images is how to represent the reconstructed
shape. If we use stereo vision using calibrated cameras,
we can obtain a dense depth map over all the pixels.
By inter-pixel interpolation, we can display the scene
as a curved surface. Alternatively, we can use a tech-
nique called space carving [5] and represent the scene
as an aggregate of colored voxels. More sophisticated
methods, called by such names as plenoptic represen-
tation [1], light field rendering [6], and lumigraph [2],
are to register all the light rays in the scene to generate
new views seen from an arbitrary viewpoint.

For images taken by uncalibrated cameras, we ex-
tract corresponding feature points and compute their
3-D coordinates, whether we deal with a continuous
video stream using a method such as the factorization
[10] or impose the epipolar geometry [3] on separate
images. Then, we define a triangular mesh that has
the feature points as vertices and display the scene as
a texture-mapped polyhedron.

The triangular mesh is usually generated by De-
launay triangulation [9] of feature points in a speci-
fied frame. This produces triangles of balanced sizes
and shapes, suitable for polyhedral representation of
a curved surface. However, a serious problem occurs
if the scene itself is a polyhedron. In man-made envi-
ronments such as indoors and cities, most objects are
polyhedra, and the vertices of polyhedral objects are
likely to be chosen as feature points. In such a case,
the edges of Delaunay triangulation may not coincide
with the physical edges. If we use such triangulation
for polyhedral representation, the displayed shape may
be inconsistent with the true polyhedral shape.

See Fig. 1, for example. The Delaunay triangula-
tion in Fig. 1(a) does not correctly represent the ob-
ject shape. The triangulation in Fig. 1(b), on the other
hand, correctly represents it. The aim of this paper
is to present a new technique for automatically trans-

*Fuchu-shi, Tokyo 183-8502 Japan
nakatuji@suri.it.okayama-u.ac.jp

T Okayama-shi, Okayama 700-8530 Japan
{sugaya,kanatani}@suri.it.okayama-u.ac.jp

31

(a)

(b)
Figure 1: (a) Triangulation inconsistent with the object
shape. (b) Triangulation consistent with the object shape.

forming a given triangulation into a physically compat-
ible one.

2. Compatibility of Triangulation

Many studies have been done in the past for generat-
ing optimal triangular meshes. To our knowledge, how-
ever, the only studies of optimizing edges for a given
set of vertices are those of Morris and Kanade [7] and
Perrier et al.! [8]. The basic principle for inconsistency
detection is to compare the texture in corresponding
triangular patches in different images. Suppose we
have two images of a polyhedral object. If a triangular
patch is defined on a planar surface, its texture in one
image can be mapped onto the corresponding patch in
the other image by an affine transformation?. Hence,
the intensity difference® after the mapping should be
zero in that patch. If not, the patch is not on a planar
surface, so we “flip”4 an appropriate edge into the di-
agonal position. Iterating this, we should end up with
a triangular mesh compatible with the object shape [7].

In reality, the intensity difference is not exactly zero
due to various disturbances such as inaccuracies of fea-
ture point matching, viewpoint dependent reflectance
changes, and supposedly planar faces not being exactly
planar. However, setting an appropriate threshold is
very difficult. So, Morris and Kanade [7] and Perrier
et al. [8] iteratively flipped edges so as to maximize the
similarity (or minimize the dissimilarity) between the

IThey also discuss splitting and merging of the mesh.

2Theoretically, corresponding patches in different views are
related by a homography [3], but as far as individual patches
are concerned, as opposed to a global planar scene, the mapping
can be approximated by an affine transformation with negligible
differences.

3In this paper, we consider color images and refer to the root-
mean-square difference in the R, G, and B values simply as “in-
tensity difference”.

4Morris and Kanade [7] used the term “swap”, but since only
one edge is involved, we use the more mathematically accepted
term “flip” after Perrier et al. [8].

(d)

Figure 2: (a),(b) Input images with an initial triangula-
tion. (c) Texture mapping of (b) onto (a). (d) Intensity
difference between (a) and (c).

(©)

textures of corresponding patches.

As the texture (dis)similarity measure, Morris and
Kanade [7] used the sum of square differences of the
corresponding pixel values (to be minimized), while
Perrier et al. [8] used the normalized correlation (to
be maximized). In this paper, we propose a better
approach and demonstrate that our method is very ef-
ficient with higher capability to correct inconsistencies.

3. Inconsistency Detection Template

Given a triangular mesh over a polyhedral object
scene, we hereafter say that an edge of the mesh is cor-
rect if it entirely lies on a planar face, and incorrect
otherwise. By definition, an incorrect edge connects
two points on different faces. We assume that the tex-
ture, color, or brightness of the object is different from
face to face.

Fig. 2 illustrates the principle of our incorrect edge
detection. Figs. 2(a),(b) show a polyhedral object, on
which a Delaunay triangulation (based on (a)) is over-
laid. Mapping the texture of Fig. 2(b) onto Fig. 2(a)
patch by patch, we obtain Fig. 2(c). Fig. 2(d) shows
the intensity difference between Fig. 2(a) and Fig. 2(c).
We observe narrow dark triangular regions that cross
incorrect edges. We call such a region an inconsistency
region.

This observation leads to the idea of detecting in-
consistency regions by a template specifically designed
to detect them. Fig. 3(a) shows our template (lighter
tones correspond to larger values). It is defined over
a square region ORST of size | x [with the following
value:

—(etymD? Lo>
e 27(@-y=0 rty<t,x2>y
T(x,y)= T(y,z) cty<le<y - @

“Tl-y,l—2) xz4+y>I

The template value is symmetric with respect to the
diagonal OS and anti-symmetric with respect to T'R.
The contour T'(z,y) = constant consists of two line
segments starting from R and T and meeting on the
diagonal OS. Fig. 3(b) shows the cross section along

o
(a) (b)

Figure 3: (a) Inconsistency detection template. Lighter
tones correspond to larger values. (b) Cross section along
0S.

the diagonal OS: the Gaussian function of mean [/ V2
and standard deviation «lv/2 cut in the middle and
placed upside down on the right side®.

For a given edge, we map the intensity difference of
the two triangles adjacent to it onto AOSR and AOST
and compute the correlation (the sum of the product
of corresponding pixel values) with this template. We
set the template size [in such a way that the average
area of the triangular patches in the input images is
approximately 2/2.

The reason we use an anti-symmetric template is
that we do not know a priori on which side the in-
consistency region appears; it should lie only on one
side of the diagonal of the surrounding quadrilateral
(Fig. 2(d)). Since the intensity difference is nearly zero
on the other side, we can detect the inconsistency re-
gion, on whichever side it lies, by computing the ab-
solute value of the correlation. It also has the advan-
tage of canceling small fluctuations in the intensity dif-
ference caused by texture mapping inaccuracy, since
such fluctuations are expected to spread randomly and
evenly over the quadrilateral region.

In our experiment, we set the template value T'(x, y)
to zero at the pixels on the diagonal TR and at the pix-
els within distance 0.02] pixels from the diagonal OS
or from the boundary. This is to prevent texture map-
ping discrepancies caused by inaccuracies in locating
feature points, since the periphery of a patch may be
encroached by the texture of an adjacent patch.

4. Evaluation of Edge Incorrectness

Given an initial triangulation over two correspond-
ing images, we first measure the degree of incorrectness
w(AB) of each edge AB using the template T'(z,y) of
Eq. (1). For this, we make the computation symmetric
with respect to the two images: instead of mapping the
texture from one image onto the other and computing
the intensity difference there as described earlier, we di-
rectly map the texture onto the template region ORST
by a homography and compute the intensity difference
there. The procedure is as follows:

1. If the edge AB has only one adjacent triangle, let
w(AB) = —1, meaning that AB is a boundary
edge.

2. Let AABP and AABQ be the adjacent triangles.
Let w(AB) = 0 if the quadrilateral APBQ is con-
cave in either image, meaning that we do not flip
that edge (since a reversed patch would result; see
Fig. 4).

5We experimentally found that o = 0.1 can produce a good
result.

A A
»
Q p @ P

Figure 4: Edge flipping for a concave quadrilateral would
result in a reversed patch.

3. Otherwise, map the texture in the quadrilateral
APBQ in the first image onto the template re-
gion ORST by a homography and write down the
intensity values there.

4. Affinely map the texture in AABP and AABQ
in the second image onto AOSR and AOST, re-
spectively, and subtract the intensity values from
the values written there.

5. Map the texture in the quadrilateral APB(in the
second image onto the template region ORST by
a homography and add the intensity values to the
values written there.

6. Affinely map the texture in AABP and AABQ
in the first image onto AOSR and AOST, respec-
tively, and subtract the intensity values from the
values written there.

7. Compute the correlation of the values written
there with the template T'(x,y) of Eq. (1), and
output its absolute value as w(AB).

Here, we are assuming that at the time of generating
the mesh each edge is classified either into a boundary
edge with only one triangles on one side or into an
internal edge with two triangles on both sides.

5. Procedure of Mesh Optimization

Given two images and corresponding feature points
on them, we define a Delaunay triangulation using the
feature points in the first image and isomorphically
map it to the corresponding points in the the second
image. Then, we compare the signs of corresponding
triangular patches, where we define the sign of AABC
to be 1 if the order of A, B, and C is counterclockwise,
—1 if clockwise, and 0 otherwise (i.e., degeneracy into
a line segment).

If the signs are different between the two images, the
triangle in the second image is reversed. We dissolve
such reversals as follows. If one side of the reversed tri-
angle is a boundary edge, we simply eliminate it. If the
reversal occurs inside, we flip an appropriate side of the
triangle, as discussed by Morris and Kanade [7]. After
resolving patch reversals, we do the following proce-
dure:

1. Compute the incorrectness measure w() for all the
edges as described in Sec. 4.

2. Find the edge AB that has the largest value

w(AB).

Stop if w(AB) = 0.

Flip the edge AB to PQ and compute w(PQ).

5. If w(PQ) > w(AB), eliminate the edge PQ and
restore the edge AB. Then, let w(AB) = 0.

6. Otherwise, recompute w() for edges PA, PB, QA,
and @B, if w() is not already 0, with respect to
the new mesh configuration.

7. Go back to Step 2.

In this process, the value w is used only for comparison,

> w

33

(b)
Figure 5: (a) Initial triangulation (58 edges). (b) Opti-
mized triangulation (100% correct, 2 rounds, 3.43 sec).

(b)

Figure 6: (a) Initial triangulation (31 edges). (b) Opti-
mized triangulation (100% correct, 3 rounds, 3.15 sec).

so no artificial thresholds need to be introduced. Since
the largest value of w() monotonically and strictly de-
creases at each flipping, and since edges once checked
are not checked again, the above procedure terminates
after all the edges are traversed once.

The above procedure can correct those incorrect
edges that can be corrected by a single flipping op-
eration. However, not all edges can be corrected that
way, in particular when one physical edge is crossed by
multiple mesh edges (see Fig. 7). So, we repeat the
above procedure until the mesh configuration does not
alter any further®.

6. Experiments

Fig. 5(a) shows a real image of a polyhedral objects,
on which a Delaunay triangulation is defined. Fig. 6(b)
shows the triangulation obtained by our optimization
procedure. The iterations converged in two rounds of
the procedure of Sec. 5. The correctness and the com-
putation time are also written in the caption, where
the correctness is measured by (the number of correct
edges)/(the number of non-boundary edges) in percent-
age. We used Pentium 4 3.2GHz for the CPU with 2GB
main memory and Linux for the OS.

Figs. 6~9 show other real image examples. To-
day, many algorithms are available for automatically
extracting and matching feature points, e.g., [4, 11].
However, our concern here is not the accuracy of au-
tomatic matching but the performance of mesh opti-
mization, so we selected matching points by hand.

From these examples, we can see that our inconsis-
tency detection template works very well. It is effective
even if incorrect edges cannot be corrected by a single
flipping operation (see Fig. 7). Although the inconsis-
tency regions are not so marked as shown in Fig. 2, they
still appear in the form of small narrow blobs crossing

6We record the history of the flipping and stop the computa-
tion if the same configuration appears twice, which occurs very
rarely, though.

Figure 7: (a) Initial triangulation (47 edges). (c) Opti-
mized triangulation (100% correct, 3 rounds, 4.03 sec).

(b)

Figure 8: (a) Initial triangulation (157 edges). (b) Opti-
mized triangulation (98.7% correct, 7 rounds, 11.80 sec).

incorrect edges, so our template can also detect such
inconsistencies very well.

The effectiveness of our method is not restricted to
exactly polyhedral scenes. It is also effective for objects
that have curved surfaces (see Fig. 10): our method
yields better polyhedral approximations.

We also compared the performance of our method
with that of patch-similarity maximization as used by
Perrier et al. [8] and Morris and Kanade [7]. We found
that patch-similarity maximization sometimes replace
all incorrect edges correctly, but overall our method
has higher performance in removing incorrect edges.
This is perhaps because partially distorted texture is
not sensitively reflected if the similarity is measured
across the entire patch. In contrast, our method fo-
cuses specifically on inconsistency regions where the
texture difference is most conspicuous, thereby sharply
detecting inconsistencies.

7. Concluding Remarks

We proposed a new technique for automatically
transforming a triangular mesh so that it is compat-
ible with the physical object shape. To do this, we in-
troduced a template that can sensitively detect shape
inconsistencies. Our procedure does not require any
thresholds to be adjusted. Using real images, we
demonstrated that our method is very efficient with
higher capability to correct inconsistencies.

Acknowledgments. This work was supported in part by
the Ministry of Education, Culture, Sports, Science and
Technology, Japan, under a Grant in Aid for Scientific Re-
search C(2) (No. 15500113). The authors thank Masakazu
Murata of Kumabhira, Ltd., Japan, for helping the real im-
age experiments.

34

(a) (b)
Figure 9: (a) Initial triangulation. (b) Optimized triangu-
lation (96.2% correct, 4 rounds, 11.96 sec).

5

Figure 10: Triangulation of curved surfaces. Left: De-
launay triangulation. Right: optimized triangulation. The
mesh in the top-left image was obtained using our auto-
matic matching tool [4].

References

[1] E. H. Adelson and J. R. Bergen, The plenoptic function and
the elements of early vision, in M. Landy and J.A. Movshon
(Eds.), Computational Models of Visual Processing, MIT
Press, Cambridge, MA, U.S.A., pp. 3-20, Oct. 1991.

[2] S. J. Gortler, R. Gzreszczuk, R. Szeliski, and M. F. Cohen,
The lumigraph, Proc. SIGGRAPH, pp. 43—54, New Orleans,
LA, U.S.A., August 1996.

R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, Cambridge University Press, Cambridge,
U.K., 2000.

[4] Y. Kanazawa and K. Kanatani, Robust image matching pre-
serving global consistency, Proc. 6th Asian Conf. Comput.
Vision, Jeju, Korea, Vol. 2, pp. 1128-1133, Jan. 2004.

[5] K. Kutulakos and S. Seiz, A theory of shape by space carving,
Proc. Int. Conf. Comput. Vision, Kerkyra, Greece, pp. 307—
314, Sept. 1999.

[6] M. Levoy and P. Hanarahan, Light field rendering, Proc.
SIGGRAPH, pp. 31-42, New Orleans, LA, U.S.A., August
1996.

[7] D.D. Morris and T. Kanade, Image-consistent surface trian-
gulation, Proc. IEEE Conf. Comput. Vision Pattern Recog.,
Hilton Head, SC, U.S.A., Vol. 1, pp. 332—-338, June 2000.

[8] J. S. Perrier, G. Agin, and P. Cohen, Image-based view syn-
thesis for enhanced perception in teleoperation, in J. G. Verly
(Ed.), Enhanced and Synthetic Vision 2000: Proc. SPIE,
Vol. 4023, June 2000.

[9] F. Preparata and M. Shamos, Computational Geometry,
Springer, Berlin, Germany, 1985.

3

[10] C. Tomasi and T. Kanade, Shape and motion from image
streams under orthography—A factorization method, Int. J.
Comput. Vision, 9-2 (1992), 137-154.

[11] Z. Zhang, R. Deriche, O. Faugeras and Q.-T. Luong,
A robust technique for matching two uncalibrated images

through the recovery of the unknown epipolar geometry, Ar-
tif. Intell., 78 (1995), 87-119.

