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Abstract

Object tracking is still a challenging task, especially if it is

d o ne in a realistic env iro nm ent. T he o ngo ing increase o f

co m pu tatio nal po w er and the efficiency o f the algo rithm s

allo w real-tim e estim atio n o f the o bject’s po se in six d e-

grees o f freed o m . One o f these algo rithm s is the 3 -D hyper-

plane appro ach, w hich is u sed thro u gho u t this paper, as it

has been pro ven to be fast and accu rate. W e sho w ho w to

enhance its ro bu stness by u sing a linear illu m inatio n m o d el

to gain m o re insensitiv ity to variatio ns o f the illu m inatio n

co nd itio ns. W e also present an ad aptio n to co m pensate ap-

pearence changes in case o f ex ternal ro tatio ns.

A ltho u gh so m e “ six d egrees o f freed o m ” trackers have

been established , the necessary initializatio n is o ften ig-

no red o r is o nly so lv ed ru d im entarily. In co ntrast to this,

w e sho w ho w to u se a 3 -D S IF T o bject m o d el fo r initializa-

tio n o f the w ho le tracking system and pro ve its efficiency by

experim ental resu lts u sing real im age seq u ences.

1 In tro d u ctio n

V isual o bjec t trac k ing h as em erged as an im p o rtant c o m p o -

nent in c o m p uter visio n field s suc h as intelligent h um an m a-

c h ine interac tio n, surveillance, vid eo anno tatio n, and m ed -

ic al ap p lic atio ns. T h e m ain p urp o se o f trac k ing sy stem s

is th e estim atio n o f th e p o sitio n o f an o bjec t in eac h im -

age o f an im age seq uence, und er th e assum p tio n th at th e

m o vem ents are sm all. D ep end ing o n th e sy stem d em and s,

d ifferent so lutio ns h ave been d evelo p ed in th e last d ecad es,

w h ic h allo w th e trac k ing o f m o ving o bjec ts in a real envi-

ro nm ent w ith c luttered bac k gro und using a no n-fix ed cam -

era. A p p ro ac h es based o n c o lo r h isto gram s [2 , 1 1 ] h ave

been p ro ven to be very ro bust even in case o f o c c lusio ns and

stro ng ap p earance c h anges. H o w ever, th ey lac k th e abil-

ity to estim ate o bjec t ro tatio n. A d ifferent ap p ro ac h based

o n th e eigensp ace rep resentatio n o f an o bjec t [1 ] estim ates

th e translatio n, ro tatio n, and scale o f an o bjec t in th e im age

p lane, but d o es no t h ave th e cap ability o f real-tim e p ro c ess-

ing.

T em p late m atc h ing tec h niq ues th at are based o n a first

o rd er ap p ro x im atio n o f th e o bjec t’s m o tio n [5 , 9 ] are able

to c o m p ute th e translatio n, ro tatio n, scale, and p ersp ec tive

d isto rtio n o f an o bjec t in th e im age p lane and are ro bust

against ap p earance c h anges caused by illum inatio n varia-

tio ns [4 ]. A s m any tem p late m atc h ing ap p ro ac h es assum e

a p lanar surface, [8 , 1 3 ] ap p ly a 3 -D m o d el o f an o bjec t

and estim ate th e th ree translatio n and th ree ro tatio n p ara-

m eters o f th e o bjec t w ith k no w n intrinsic c am era p aram e-

ters. B o th ap p ro ac h es y ield very go o d results, but fo r ex -

p erim ental evaulatio ns o nly o bjec ts w ith p rim itive surfaces

lik e p lanes and c y lind ers are used . In c o ntrast,th e ap p ro ac h

o f [1 5 ] allo w s trac k ing o f arbitrary rigid o bjec ts by ap p ly -

ing ligh tfield m o d els in a p ro babilistic ap p ro ac h , but lac k s

in c o m p utatio nal effic iency if all six p o se p aram eters h ave

to be calculated .

O ur trac k ing sy stem is based o n th e 3 -D hyperplane ap-

pro ach by [8 ], a 3 -D tem p late m atc h ing tec h niq ue. W e

p resent th e integratio n o f 3 -D p o int m o d els w h ic h are ac -

q uired by a stru ctu re-fro m -m o tio n ap p ro ac h [6 ] fro m arbi-

trary o bjec ts. T h e c o rresp o nd ence p ro blem is so lved by us-

ing S IF T featu res [1 0 ], w h ic h w e also use fo r th e initial-

iz atio n o f th e o bjec t trac k er, since th e initial p o se is gener-

ally no t k no w n. T h erefo re, c o rresp o nd ing feature p o ints o f

th e initial im age and th e 3 -D p o int m o d el o f th e o bjec t are

d etec ted and th e six p o se p aram eters are estim ated by th e

P OS IT algo rith m [3 ]. A s th e c o rresp o nd ences o f feature

p o ints can be inc o rrec t, w e use th e L M ed S [1 2 ] to c o m p en-

sate fo r o utliers. W e ex am ine th e cap abilities and lim ita-

tio ns o f th is m eth o d by ex p erim ents w ith real im ages.

T h e ap p earance o f an o bjec t c an c h ange rap id ly d ue to

illum inatio n variatio ns, e.g., c aused by auto -ex p o sure c o r-

rec tio n o f th e cam era. W e p ro p o se to c o m p ensate th o se

influences w ith a linear illum inatio n m o d el. A no th er en-

h ancem ent ad d resses th e p ro blem o f th e ap p earance c h ange

o f an o bjec t c aused by ex ternal ro tatio n (i.e., ro tatio n no t in

th e im age p lane). W e sh o w h o w to ad ap t th e m o d el d uring

runtim e to inc o rp o rate new view s to enh ance th e ro bust-

ness o f th e m o tio n estim atio n. In o ur ex p erim ents, w e use

an o bjec t w ith a c o m p lex surface and sh o w th at o ur p ro -

p o sed m eth o d y ield s very go o d results, even in scenes w ith

c luttered bac k gro und .

2 T e m p late M atch in g w ith H y p e rp lan e s

T em p late m atc h ing algo rith m s fo r d ata-d riven trac k ing

w o rk o n a seq uence o f im ages, w h ere every im age is in-

d ex ed by a d isc rete tim e t. A d d itio nally , a reference tem -

plate m ust be sp ec ified in th e first im age. T h e reference

tem p late is d efined by th e vec to r r = (x1, x2, . . . , xN)T ,
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which contains the homogeneous 3-D coordinates [6] of

selected object points. The gray-level intensity of a 3-D

point xi = (xi, y i, z i, 1 )T , which has been projected into

the image plane at time t using the projection matrix of a

calibrated camera, is given by f(x, t). C onsequently, the

vector f(r, t) contains the intensities of template r at time

t.

The transformation of the reference template r at time t

is modeled by r(t) = g (r, µ(t)), where the vector µ(t) =

(µt1(t), µt2(t), µt3(t), µr1
(t), µr2

(t), µr3
(t))

T
contains

the 3-D translation parameters µt1(t), µt2(t), µt3(t) and the

three rotation parameters µr1
(t), µr2

(t), µr3
(t) (axis-angle

parameterization [6]) of the object. Template matching

can now be described as computing the motion parameters

µ(t) that minimize the least-squares intensity difference

between the reference template and the current template.

S ince non-linear minimization in a high-dimensional pa-

rameter space involves extremely high computational cost,

it is more efficient to use a first order approximation

µ(t + 1 ) = µ(t) + (1)

A(t + 1 ) (f (r, t0) − f (g (r, µ(t)) , t + 1 ))

as presented in [5, 9]. The transformation function

g (r, µ(t)), which projects the model points into the image

plane, is given by

g (r, µ(t)) =
(

Mi

(

1 0 0 0

0 1 0 0

0 0 1 0

)

Me(µ(t))rT
)T

, (2)

where the matrix Mi ∈ IR 3×3 contains the intrinsic cam-

era parameters and Me(·) ∈ IR 4×4 contains the extrinsic

camera parameters.

There are two approaches for computing the matrix A(t)
from Eq. (1). Hager and Belhumeur [5] propose the appli-

cation of a Taylor approximation. The hyperplane approach

presented in [9] acquires matrix A(t) by a least-squares es-

timation which is done in a short initialization step. It was

also shown how to make matrix A independent of time t.

As the hyperplane approach has a superior basin of conver-

gence, we will use it throughout the rest of this paper.

3 SIFT Object Models

The acquisition of the reference template r is a very chal-

lenging task. We decided to use a structure-from-motion

technique [6], because many robust algorithms are known

and only a short sequence of training images is required

to create a precise point model of the object. F or solving

the correspondence problem of 2-D points, we use local

S IF T features [10], which consist of a 2-D coordinate (fea-

ture point) and a 128 dimensional feature vector c. The

S IF T feature points are detected by applying a scale selec-

tion mechanism based on differences of Gaussian smoothed

images. F or detailed information refer to the original paper

[10].

F or every feature point in every training image, a S IF T

feature vector c is calculated. In order to estimate the 3-D

position of the feature points, similar features are collected

in a set

Ci = {c | m(ck) �= m(cl) ∧ ∃ d(ck, cl) < ε} ; (3)

i �= j ⇒ Ci ∩ Cj = ∅,

F igure 1: Example of the assignment of the 3-D point

model (left) of a S IF T object model to a 2-D image. The

pose is estimated by the P OS IT algorithm [3].

where m(c) returns the index of the image where the fea-

ture vector c has been calculated, i, j are indices of the set,

d(ck, cl) is the Euclidean distance of two features and ε is

a threshold in order to ensure that only similar features are

stored in the set. This set is very similar to the so called trail

in [7 ]. F or every set Ci, we estimate the 3-D position xi by

the structure from motion algorithm of [7 , S ection 3] and

calculate a mean feature vector c̄i. The reference template

r is built using all of these 3-D points.

In contrast to point tracking methods, which are very

commonly used for 3-D reconstruction, the application of

the S IF T features has the advantage that it can be used for

both estimation of the reference template and initialization

of the object tracker. In principle, the initialization of the

tracker is similar to the calibration problem, as the 3-D

point model represents the calibration pattern and for every

point xi a mean S IF T feature c̄i has been calculated. After

the extraction of the S IF T features of the reference image,

the assignment of a feature vector c to the n-th model fea-

ture vector is done by

n(c) = a rg m in
i

d (c, c̄i) . (4)

In addition, assignments for which the Euclidean distance

exceeds the threshold ε of Eq. (3) are ruled out. We estimate

the initial object position µ(t0) for the image at time t = 0
using the P OS IT algorithm [3], but in principle, more com-

plex techniques are applicable as well. This initialization

step is illustrated in F ig. 1.

4 Improv ing the R obustness

The change of appearance is an important challenge in tem-

plate matching approaches. One reason for those changes

are illumination variations. We apply a normalization of

the template’s intensity distribution using its mean and vari-

ance. This approach has been proven to be very efficient

with regard to robustness and computating time [4].

A second reason for appearance changes, and thus low

robustness of the tracker, are large external rotations. We

enhance the tracking system by training separate approxi-

mation matrices A for different views during runtime. C on-

sequently, the approximation matrix which has been calcu-

lated at the viewpoint with the external rotation most similar

to µ(t − 1 ) is used for estimating µ(t).
As described in the previous section, the initial pose pa-

rameters µ(t0) are estimated by the P OS IT algorithm. F or
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3-D object model

Figure 2: A video sequence of 36 images is used for a 3-d

reconstruction of a toy-elk. The estimated 3-D object model

(dots) and the camera positions (pyramids) of the 36 images

are illustrated.

this, 2-D image points and their corresponding 3-D model

points are required. Although local SIFT features are well

suited for solving the correspondence problem, wrong as-

signments may occur and have to be taken into account. To

reject these outliers, the LMedS algorithm [12] is applied.

5 Experiments

Many experiments with real image sequences have been

performed to demonstrate that our proposed method leads

to highly accurate tracking results. For this paper, we cap-

tured a video sequence (35 images) of a toy elk from dif-

ferent views for model acquisition with a hand-held Sony

DFW-VL500 camera (resolution of 640 x 480 pixels). One

property of this object is that the surface is highly complex

and simple geometric models as in [8, 13] are ineligible.

The toy elk was placed on a black cloth to prevent the ex-

traction of feature points on the background. The SIFT fea-

ture point detector acquired 5495 feature points for the 36

images, consequently the average was 152.6 feature points

per image (minimum 125, maximum 176). After detection

of corresponding feature points (cf. Eq. (3)) and 3-D recon-

struction, a model consisting of 306 3-D points was created.

The computation time for calculating the SIFT features, de-

tection of correspondences and 3-D reconstruction was 49

seconds on a 2.4 GHz Intel Pentium 4 PC. The result is pre-

sented in Fig. 2 where the 3-D model, camera positions of

the corresponding 36 images, and one image of the image

sequence are shown.

For demonstrating the capability of the tracker, we re-

moved the black cloth and put some other objects into the

scene to prove that our approach is not affected by a clut-

tered background. The estimation of µ(t0) and initializa-

tion of the hyperplane tracker took about 3 seconds. This

value depends strongly on the number of detected feature

points, and the computation time decreases in case of sim-

ple scenes. Typically, the computation time is between 1

and 4 seconds. After initialization, the estimation of µ(t)
(cf. Eq. (1)) is very efficient, and allows processing of 30

fram es per seconds. A dditionally , we m ov ed th e cam era as

well as th e toy elk to different positions. E v en in th is case,

th e b ack -projected point m odel (u sing E q . (2 )) rem ains on

th e ob ject. S om e im ages of th e wh ole seq u ence are pre-

sented in F ig. 3. W e tested th e presented approach su ccess-

fu lly on oth er ob jects lik e cu ps, tetrapack s, tins, and b ook s.

W ith ou t an adaption step (c.f. S ec. 4 ), an ex ternal rotation

of ab ou t 1 0 to 2 0 degrees is accepted b y th e track er. T h e

approach of [1 5 ] is not affected b y ex ternal rotation, b u t

lack s in real-tim e capab ility if all pose param eters h av e to

b e calcu lated. In contrast to th at, th e h y perplane approach

is significantly m ore efficient in com pu ting tim e and allows

a fast initializ ation u sing th e S IF T ob ject m odel.

A s th e initializ ation play s an im portant role in ou r fram e-

work , we tested th e efficiency of th e pose estim ation u sing

th e S IF T ob ject m odel. F or th is we acq u ired a m odel of a

pack age of ju ice and captu red th ree im age seq u ences each

with 1 00 im ages with h om ogeneou s, sligh tly clu ttered, and

h igh ly clu ttered b ack grou nd (F ig. 4 ). T h e pose was esti-

m ated twice for ev ery im age as proposed in S ec. 3, th e first

tim e u sing th e L M edS and th e second tim e not u sing it.

T h e m edian b ack projection error of th e m atch ed m odel fea-

tu re points for ev ery pose estim ation, wh ich is in ou r point

of v iew a good q u ality m easu rem ent, h as b een calcu lated.

F or easier com parison, all m edian b ack projection errors for

one seq u ence h av e b een ordered ascendingly . T h e av er-

age nu m b er of m atch ed featu res in case of h om ogeneou s

b ack grou nd is ab ou t 6 9 and in case of clu ttered b ack grou nd

ab ou t 5 3. E v en in th e case of h igh ly clu ttered b ack grou nd,

it can b e seen in F ig. 4 (d) th at th e b ack projection error is

less th an 1 .5 pix els in ab ou t 8 0 percent of th e estim ations.

T h e second graph (e) sh ows th e b enefits of th e L M edS al-

gorith m . It is clearly v isib le th at th is m eth od enh ances th e

detection accu racy .

6 Conclusion

In th is paper, we presented a m odel-b ased track ing algo-

rith m for estim ating th e ob ject’s 3-D pose. T h is tech niq u e

is b ased on Ju rie’s h y perplane approach [8 ]. W e addressed

two prob lem s, wh ich arise u sing th is m eth od. T h e first

prob lem is m odel acq u isition and th e second one is th e ini-

tializ ation of th e track er. B oth issu es are solv ed b y u sing

local S IF T featu res [1 0].

A disadv antage of th is approach is th at m odel points

cou ld leav e th e field of v iew b ecau se of strong ex ternal rota-

tion. T h is issu e can b e solv ed b y u sing separate approx im a-

tion m atrices and regions wh ich are related to v isib le points.

A noth er idea wou ld b e to track each point indiv idu ally with

a point track er lik e th e S h i-T om asi-K anade track er. H idden

points h av e to b e rejected in th is approach as well. F or de-

tection of th ese points, we plan to calcu late a triangle net

for th e ob ject m odel and v erify th e v isib ility b y ray -tracing.

T h e algorith m of [1 4 ] cou ld b e good starting point.

A ck now le d g e m ents

T h is work was partially fu nded b y th e E u ropean C om -

m ission 5 th IS T P rogram m e - P roject V A M P IR E and

th e G erm an S cience F ou ndation (D F G ) u nder grant S F B

6 03/T P C 2 . O nly th e au th ors are responsib le for th e

content.

W e wou ld lik e to th ank D av id L owe for prov iding th e

sou rce code of th e S IF T featu re detector [1 0].
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Figure 3: Three images of a video sequence in which a toy elk was tracked with the adaptive 3-D hyperplane tracker. It

can clearly be seen that the points of the model are placed very accurately on the object, even if the appearance changes

drastically. Although the camera and the object are moved at the same time, the object is tracked successfully.
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Figure 4: Detection results for three test image sequences where a package of juice has to be detected in front of a homoge-

neous (a), slightly cluttered (b), and highly cluttered background. The median backprojection error of the model points are

calculated for every image and sorted in ascending order. The first graph (d) shows the quality of the pose estimation using

the LMedS algorithm for the three different background types. The second graph (e) illustrates the median backprojection

error of the “ slightly cluttered” sequence (b) with and without application of the LMedS algorithm.
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