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Abstract

An illumination image, which is a part of intrin-
sic images, represents the effect of a lighting condition
of the scene. To properly handle illumination effects
such as cast-shadows in the input image, image ma-
nipulation using the illumination image is only natu-
ral, since it describes variation of lighting effects from
a reflectance image which can be considered as an im-
age under the standard illumination. We have shown
in previous work [12] that illumination effects are rca-
sonably factored out from the input images by using
illumination images. To apply this method as a prepro-
cessing stage to a video surveillance system, realtime
estimation of illumination images is required. Unfor-
tunately, the cost of estimation of illumination images
in realtime is computationally high. In addition, it
is necessary to synthesize background images before
deriving illumination images when the scene contains
dynamic objects. In this paper, we illustrate our ap-
proach to modeling illumination images with principal
component analysis (PCA) to directly estimate illumi-
nation images from input images which contain moving
objects in the scene. We propose this framework pre-
supposing that the camera is fixed and the scene is
observed under several lighting conditions.

1 Intrinsic Images

The idea of intrinsic images was first proposed by
Barrow and Tencnbaum [2]: the input image I intrin-
sically is composed of the reflectance image R and the
illumination image L, i.e. ] = R- L. Since the equation
is ill-posed, decomposition into the intrinsic images is
known to be difficult.

Recently, Weiss [4] proposed an approach to use the
serics of input images to derive a single reflectance im-
age and the series of illumination images. Since the
method relies on the statistics of the natural images,
it robustly decouple the reflectance image and the illu-
mination images from the input image sequence. How-
ever, since the method does not consider the camera
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gain parameter, it cannot directly be used with the
ordinary inexpensive cameras.

We enhance Weiss’s method to derive intrinsic im-
ages to explicitly take the camera gain into account,
We formulate the intrinsic image model as

I(z,y,t) = G(t) - R(z,y) - L(z,y,1) (1)
where I, G, R and L correspond to input images, cam-
cra gains, a reflectance image and illumination images.
In log domain, we denote I, G, R and L in a lower case
i, g,  and [, respectively. We begin with Equation (2).

(2)

With n spatial derivative filters f,, we compute a fil-
tered reflectance image r,, by applying Weiss’s ML cs-
timation method, which takes a temporal median of
filtered input image,

i(z,y,t) = g(t) + r(z, y) + Uz, . t)

(3)

then compute each filtered illumination image [, in
derivative domain where this estimation was donc by
[ =1i—r in Weiss’s work.

7 = median{ fu *i(z,y,t)}

L fn*i(z,y, t) — median, { fn *i(z,y.t)}

fl’l * i(:u", y1t) - f'n

(4)

Finally camera gains g are computed by taking spatial
median of obtained gain images.

(5)

This camera gain g actually is a spatial constant which
is erased when derivative filters arc applied to input
images and our method correctly handles the spatially
independent factor g.

§ = mediang y{i(z,y,t) — 7(z,y) — [(z,y, 1)}

2 Creating Illumination Eigenspace

Our objective is the modeling of illumination images
for rcaltime cstimation of illumination images. Our
method first create a lot of the illumination images us-
ing previously mentioned method, and store them for



the realtime estimation. At the first estimation step, to
decomposc the serics of input images into the intrinsic
images, it is necessary to remove moving objects from
the input images. Therefore we first create background
images in each short time range in the input image se-
quence, assuming that the illumination condition does
not vary in that short time period. We employed the
simple averaging of the images for the background csti-
mation, while more rich method would give the better
estimates. These background images, B(z,y,t), arc
used as the input image sequence for estimating intrin-
sic images.

B(z,y,t)

G(t) - R(z,y) - L(z,y.1) (6)

To store the estimated illumination images, we pro-
pose an illumination eigenspace to model variation
of illumination images of the scene. The illumina-
tion eigenspace is an eigenspace into which only il-
lumination ecffects arc transformed. As a preliminary
framework, we use PCA to construct an illumination
cigenspace of a target scene, in our case, the cross-
road shown in Figure 5. PCA is widely used in sig-
nal processing, statistics, and ncural computing. This
process is also called the Karhunen-Loéve transform.
The basic idea in PCA is to find the basic compo-
nents [sy, 82, ..., $,] that explain the maximum amount
of variance possible by n lincarly transformed compo-
nents. Figure 2 shows the hyper-plane constructed by
mapping illumination images onto the cigenspace using
all eigenvectors.

In our case, we mapped G(t): L(x, y, t) to the illumi-
nation eigenspace, instead of mapping L(z,y,t) only.
Because when given an input image, the reflectance
image R(z,y) is useful to eliminate the scene texture
by computing I(z,y,t)/R(z,y), and the resulting im-
age becomes G(t) - L(z,y,t). Let us denote the prod-
uct of the camera gain and the illumination image,
L'(z,y,t) = G(t) - L(z,y,t). We keep the mapping
from L'(z,y,t) to both G(t) and L(z,y,t) for deriv-
ing each components. Figure 1 shows the process of
crcating the illumination cigenspace.
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Figure 1: Set up flow of the illumination eigenspace.

The upper side image shows the result of mapping
all the product of the illumination image and the cam-
cra gain, L'(z,y,t), from 120 days(7:00-15:00) while
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Figure 2: Plotted illumination imagces in the illumina-
tion eigenspace (used the first 3 eigenvectors for dis-
play). Upper: with 120 days data(7:00-15:00), Lower :
with 10 days data(10:00-14:00)

the lower side image illustrates the result of using only
10 days(10:00-14:00) of L'(z,y,t). In the lower side
figure, while the three axes represent the first three
eigenvectors, the graph is transformed so that the vari-
ation along different days is aligned to the vertical axis,
which is the first cigenvector (the cigenvector with the
largest eigenvalue). Also, the variation along the time-
linc is shown as the parabolic curve when the graph
is sliced orthogonal to the vertical axis. For example,
the upper part represents illumination variation along
the time-line of a sunny day, and lower part represents
that variation on rainy and cloudy days. As can be
seen clearly, the most significant variation caused by il-
lumination and time in the L'(z,y,t) can be captured
with the first few eigenvectors. So, by constructing
an cigenspace of the L'(z,y,t) sequence with the first
k significant eigenvectors, and mapping all L'(z,y, t)s
onto the cigenspace, we can obtain a very cfficient rep-
resentation of the variation of illumination in the input
image sequence.



3 Direct estimation of Illumination im-
ages

Using the illumination cigenspace, direct cstimation
of illumination image is done given an input image
which contains moving objects. We consider that the
global similarity of the illumination image is measured
by the distance weighed by contribution ratio of cigen-
values in the illumination eigenspace. Thus, we divide
the input image by a reflectance image to get a pseudo
illumination image L* which includes dynamic objects.
Using it as a query, the best approximation of the cor-
responding illumination image L is estimated from the
illumination cigenspace.

L' =arg ming, ij \/(.F(L',j) = F(L'i,j))g

where F is a function which maps an illumination
image onto the illumination eigenspace, and w;
Ai/3 g Ai in which we denote A an cigenvalue.  Fi-
nally, the true illumination image L(z,y,t) and the
camera gain G(t) arc derived using the mapping ta-
ble from L’. For a high-dimensional nearest neighbor
scarch, we cmployed the SR-tree method [11] which is
known for its fast search algorithm especially for high-
dimensional and non-uniform data structures such as
natural images. Figure 3 shows the data flow of this
direct estimation process.
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Figurc 3: Flow chart of dircetly estimating the illumi-
nation images.

The number of stored images for this experiment
was 2048 and the contribution ratio was 84.5% at 13
dimensions, 90.0% at 23 dimensions, and 99.0% at 120
dimensions. The graph of the cumulative contribution
ratio is as shown in Figure 4. We choose to use 99.0% of
cigenratio for this experiments. Thus the compression
ratio is about 17:1, and the space needed to store the
subspace is about 32 MBytes.

(7)
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Figure 4: Contribution ratio of the illumination eigen-
vectors.

4 Result

The result of the illumination image search is shown
in Figurc 5. In this figure, starting with the left hand
side column, the first column shows input images I,
the sccond column shows pscudo illumination images
L*, the third column corresponds to estimated illumi-
nation images L'. The right end column shows the
background images which correspond to the estimated
illumination images. The nearest neighbor search in
PCA is rcasonably robust to cstimate the most simi-
lar illumination image L’ from the pseudo illumination
image L*. However, since the sampling of the illumi-
nation images is sparse, there are slight differences in
shadow shapes. It is possible to acquire the exactly cor-
rect illumination image L when the database is dense
cnough, but it is not casy to preparc such a databasc.
To solve this problem, we are considering to work on
shadow interpolation for generating appropriate illumi-
nation images. We believe the illumination images de-
rived from our framework has great advantage in cven
simple interpolation schemes since they are totally free
from the scene texture.

As for the computational cost, the average time of
the nearest neighbor search is shown in Table 1 with
MIPS R12000 300MHz, when the number of stored illu-
mination images is 2048 and the image size is 360 x 243.
Since the input image is obtained at the interval of
33ms (at 30 frames/sec), the cstimation time is fast
enough for the realtime processing.

| Dimension [ 13 7 23 [ 48 | 120 |
Contribution ratio(%) || 84.5 ] 90.0 | 95.0 | 99.0
NN Search time(us) 6.7 | 68 | 7.9 | 12.0

Table 1: Dimension of the illumination eigenspace,
Contribution ratio and NN scarch cost.
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Figure 5: The result of estimating illumination images. (a)lnput images I, (b)Pseudo illumination images L*
which are computed by directly dividing input images by a reflectance image, (c)Estimated illumination images L'
derived by ncarest neighbor search in illumination eigenspace, (d)background images corresponding to estimated

illumination images

5 Conclusion

In this paper, we present a method to estimate illu-
mination images directly from input images in realtime.
Estimated illumination images are used to normalize
and manipulate target image sequence with regard to
illumination variation, for example, to eliminate shad-
ows, as a preprocessing stage of video surveillance sys-
tems using illumination eigenspace. The direct esti-
mation method is demonstrated over an urban scene
image datasct which has drastic variations in lighting.
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