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Abstract 

This paper presents new results in the field of very 
low bitrate codir~g and cornpression usirig 3D iriforrna- 
tions. Contrary to prior art in model-based coding 
where 3D models have to  be known, the 3D models 
are automatically computed from the original video 
sequence. The camera parameters and the scene con- 
tent are supposed unknown and the video sequence is 
processed on the fly. A stream of 3D models is then 
extracted and compressed, using adapted compression 
techniques. \Ve finally show results of the proposed 
compression scheme, and show the efficiency of these 
approach. 

1 Introduction 

Instead of representing video sequence as a set, of 
pixels, like in classical video coding algorithms, 3D 
model based coding aims at representing the video se- 
quence with one or severals textured 3D models and a 
set of camera/objects parameters. This topic has been 
addressed for rnany years, particularly In the field of 
visio-conference where a 3D model of the human face is 
used to represent the v~deo sequence of the speaker [I]. 
In this paper, we address the problem of the represen- 
tation of unknown static scenes viewed by a monocular 
moving camera. 

The 3D-based coding has several advantages com- 
pared to irnage based coding: first it allows very low 
bitrate coding since the only informations to  transmit 
are the camera parameters, the 3D modcl of the scene 
(if it is unknown on the decoder side) and correspond- 
ing texture image mapped on this 3D model. More- 
over, with such a coding, we can benefit of 3D features 
such as viewpoint transformation, illumination change 
with respect to  geometry or synthetic 3D-model cod- 
ing. However many works [2] [3] are based on known 
3D-models, and few results are available concerning 
3D-model based video compression with unknown 3D- 
models. On the other hand, computer vision tech- 
niques, and particularly shape from motion techniques 
allow to extract 3D-models of a static scene viewed 
by a moving camera [4] [5] [6]. However, the shape- 
from-motion process still is a difficult problem without 
simplifying assumption on the scene or the camera pa- 
rameters. Another solution is to  take into account a 

very large amount of data among the video sequence 
in order to  recover the whole 3D structure of the scene 
[71 [a]. 

In this papcr, we present an automatic scheme 
for 3D-model based video compression of static scene 
viewed by a moving camera. Video coding framework 
brings some particular constraints: first we must con- 
sider that camera parameters (both extrinsic and in- 
trinsic) and scene content are unknown. We must also 
take into account that video coding requires an on-the- 
fly process: we must process only a small part of the 
video sequence, not waiting for all data to process the 
video sequence. We then have chosen to based our 
process on the extraction of a stream of 3D models, 
instead of a unique 3D model which requires too much 
informations in the case of video coding. Extraction of 
the 3D models is briefly described, and we pay more 
attention on the compression stage. 

2 3D models stream generation 

We first present the structure of the representation: 
each 3D model is extracted and used for a small portion 
of the video sequence called GOP (Group Of Picture). 
The GOPs overlap themselves, that is the last image 
of a GOP is the same ns the first image of the next 
one. We call these images Keyframes. For each GOP, 
a 3D modcl is automatically extracted on the fly. The 
principle of extraction is based on shape-from-motion 
method: we use a dense mesh-based motion estimator 
using multi-grid and multi-resolution approaches [ll]. 
The camera intrinsic parameters are estimated or fixed 
to  approximated values. Thc extrinsic parameters are 
computed using classical calibration methods and an 
adapted bundle adjustment method [9]. The dense mo- 
tion field from the first to the last image of the GOP 
and camera parameters for these two images allow to 
reconstructed a dense depth map of the first image of 
the GOP. A uniform triangular mesh is then applied on 
each first image of each GOPs which gives a 3D model 
and its associated texture image (the first image of the 
GOP). Camera extrinsic parameters are retrieved for 
each image of the video sequence. The original video 
sequence reconstruction is then realized by the projec- 
tion of each 3D textured models. A 3D fading is also 
used to  smoothly switch from one GOP to the next one 
[9]. One must must notice that the decoding stage uses 
classical 3D algorithms and is realized in real time. 
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compression of the different parts of the representation, 
that is 3D model, texture images and camera parame- 
ters use adapted compression techniques. 

3.1 Texture images 

We use a representation similar to MPEG format 
for low bitrate (IPP), that is: one Intra (I) image a t  
the beginning of the video stream followed by Predicted 
(P) images. 

The first image of the sequence is compressed us- 
ing a method similar to JPEG2000 standard [lo], that 
is: a wavelet transformation, an adaptive quantifica- 
tion (using EBCOT) and an entropic coding. The fol- 
lowing texture images are predicted using the previous 
decoded texture image (of the previous GOP) and the 
previous 3D model: the previous 3D model is mapped 
with the previous texture image and projected using 
the camera parameters of the last image of the previ- 
ous GOP (i.e. the first image of the current GOP). It 
produces a image prediction of the texture image simi- 
lar to a forward motion compensated image in classical 
video coding scheme (fig. 1). We then encode the dif- 
ference image using the same method as for the Intra 
image, adapted to the Predicted image characteristics. 

Figure 1: Principle of predictive coding method of the 
texture images. 

3.2 3D models 

Each 3D model can be see as a 3D model extruded 
from the uniformly meshed depth map. The 3D mod- 
els stream, that is the decimated depth map, is also 
compressed using a wavelet transformation. However, 
we use an adapted quantification law: the depth (from 
the camera position to the 3D vertex of the 3D mesh) 
of each point of the 3D model is quantified using a 
normalized inverse law. Assuming a pure translational 
motion, this quantification allows to compressed the 
3D model with a linear reprojection error regarding to  
the quantification step. The mesh size also allows to  
adapt the bitrate of the compressed video sequence. 
We typically fix the mesh size to 8 for low bitrate and 
12 for very low bitrate. The quantization step is chosen 
such as the projection error is less than 0.5 pixel. 

3.3 Compressed stream generation 

The representation is effectively compressed, allow- 
ing to compute the real coding cost. We can accurately 
choose the target bitrate Rc thanks to EBCOT coding 

of texture images. The coding cost Rt,,t of the current 
texture image is simply chosen as: 

with fr the framerate of the video sequence, R,,, the 
coding cost of the camera parameters (100 bits per 
Keyframe images and 50 bits for other intermediate 
images) and RM the coding cost of the 3D model. 

One must notice that the proposed representa- 
tion intrinsically allows 3D manipulations like stereo- 
visualization or scene manipulation [9]. 

4 Results ' 

The compression scheme performance is first com- 
pared to state of the art low bitrate encoder (H26L) 
and we show new results in very low bitrate coding 
area. 

On figure ( 5 ) ,  we show a result with the Street video 
sequence ': format is CIF 4:2:0 a t  25Hz, global motion 
is a translation along z-axis, neither camera parame- 
ters nor scene content are known. The internal camera 
parameters are fixed to  typical values and focal length 
is fixed to an approximate value. The video sequence 
is compressed with H26L video encoder at 82kb/s 
which is the minimum bitrate with this coder. The 
sequence is also encoded with the proposed method 
denoted Rec3D with the same parameters. The fig- 
ure (5) shows PSNR score along the sequence: Texture 
curve denotes the PSNR of the compressed texture im- 
ages mapped on the successive 3D models. The Image 
curve denotes the PSNR of the reconstructed sequence 
with the Rec3D method and H26L with the H26L en- 
coder. The curves show that PSNR score are similar 
for both methods, and better for Rec3D method when 
the 3D model is refresh (peak on the second curve). 
On figures (2-4), we compare visual quality of recon- 
structed video sequence: the images clearly show that 
Rec3D provides better visual quality. For such a bi- 
trate, H26L method introduces classical block artifacts 
and texture degradation whereas Rec3D provides bet- 
ter texture images resulting in good visual quality of 
the reconstructed video sequence. 

On figures (6-9), we show similar results on the 
Stairway video sequence. The format of these sequence 
is CIF 4:2:0 at 25Hz, global motion is a translation 
along x-axis, neither camera parameters nor scene con- 
tent are known. The internal camera parameters are 
fixed to typical values and focal length is fixed to an 
approximate value. One must notice that these video 
sequence is very shaky. The video seqlience is com- 
pressed with the H26L video encoder at 125kb/s which 
is the minimum bitrate with this coder, and the pro- 
posed coder. The figure (9) shows that the PSNR of 
H26L coder is better than the one of Rec3D coder. 
However, the PSNR of the texture images and figures 
(6-8) show that the visual quality of the reconstructed 
sequence still is better with the Rec3D coder. 

Moreover, the proposed method allows very low bi- 
trate coding (up to  16kb/s for CIF, 25Hz format) which 
are not reachable by classical image based coders. The 
figures (10-12) shows results with t,he Street video se- 
quence for a target bitrate of 16kb/s. The figure (12) 
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shows the PSNR score along the video sequence: Tex- 
ture curve shows that PSNR score remains good for 
such a bitrate. The figures (10) and (11) show an im- 
age extracted from the reconstructed video sequence: 
we see that global visual quality is quite good, despite 
compression artifacts. One must notice that such a bi- 
trate is considered as very low for CIF/25Hz format 
video sequence. 

5 Conclusion 

1% shows results on real video sequence and evalu- 
ate performance of vision computer based approach for 
video compression. The results clearly show that such 
an approach is very efficient for low bitrate coding and 
also show new results for very low bitrate coding. We 
show that the proposed scheme allows better perfor- 
mance than classical scheme like H26L for static scene 
video sequences. However, quality still is difficult to  
evaluate for such a coding approach: the method is in- 
trinsically not based on a pixel coding approach, mak- 
ing classical quality measures (such as PSNR score) 
unsuitable. Moreover, we plan to  extend the proposed 
scheme to scene with moving objects, making the ap- 
proach more general for video coding purpose. 
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Figure 5: PSNR of Street video sequence a t  82kb/s: 
Figure 9: PSNR of Stciirway video sequence at coniparison btt,werrl H26L and Rec3d method. 
125kb/s: comparison betxeen H26L and Rec3d 
method 

Figure 6: Stairway video sequence a t  125kb/s: image 
67 reconstructed by H2FL coder. 

Figure 10: Street video sequence at 16kb/s: irnagc 100 
reconstructed by Rec3D coder. 

Figure 11: Street video sequence at 16kb/s: zoom on 
Figure 7: Stairway video sequence a t  125kb/s: image image 100 reconstructed by Rec3D coder. 
67 reconstructed by Rec3D coder. 
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Figure 8: Staarw(l?! video seqllence a t  125kb/s: Figure 12: PSNR of Street seqllpnce ;it 16kbls 
on image 67 reconstructed by H26L (left) and Rec3D with Rec3D methocl. 
(right) coder. 




