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Abstract 

In this paper, we propose an efficient method for 
tracking multiple objects, which deals with occlusion 
situations in an image. We use Shape from silhouettes 
method to reconstruct objects 3D position from images 
taken from different directions. Then we track the ob- 
jects' reconstructed 3D positions by using mixed-state 
CONDENSATION algorithm. The experimental re- 
sults show the robust tracking of multiple objects. 

1 Introduction Figure 1: Understanding 3D dynamic erivironment 

In this paper, we treat the situation shown as Fig.1, 
where multiple cameras observe a scene and track mov- 
ing multiple objects in the scene. We achieve robust 
identification of multiple moving objects by fusing mul- 
tiple images, and track their 3D positions by using 
CONDENSATION based algorithm[2]. 

We take multiple camera images from various di- 
rections, and reconstruct the objects' 3D-shape, then 
track them. To track moving objects,first, we must 
extract some feature of the objects from the image. 
In a case of tracking multiple objects, the probability 
of the positions of the extracted features usually have 
non-Gaussian distribution, so the class of techniques 
employing the Kalman filter is not available to track 
their motions. 

Our method use the CONDENSATION algorithm com- 
bined with a mixed-state model which is extended 
from the conventional CONDENSATION algorithm devel- 
oped for visual tracking in clutter. The mixed-state 
CONDENSATION algorithm has some prediction models 
which correspond to the dynamics of moving object. 
By using this algorithm, we track moving object which 
have several possible states (for example, bouncing ball 
has two state, constant acceleration state and bounce 
state). To deal with the occlusions in an image, we 
extended 2D mixed-state CONDENSATION algorithm to 
3D, and realized the robust tracking coping with oc- 
clusions. 

2 Reconstruction of object's 3D-shape 

First, we reconstruct the object's 3D-shape, then re- 
cover their 3D positions. We employ the shape from sil- 
houettes method (SS-method) which reconstructs 3D- 
shape from silhouettes in multiple images[4]. We ob- 
tain the silhouettes' images by the background subtrac- 
tion techniques. Then we reconstruct 3D-shape as the 
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Figure 2: Background subtraction and 3D-shape from 
silhouettes of balls. Left: 3 view images including mov- 
ing balls. Middle: Background subtraction images. 
Right: Reconstructed 3D positions of balls. 

product of cones which are the back projection of each 
cameras' silhouette images. 

3 Mixed-state CONDENSATION algo- 
rithm 

The CONDENSATION algorithm is a time sequence 
filter for tracking objects. We consider the object po- 
sition with a probability, that is, at  every time step, 
every place has some probability with which the ob- 
ject exists at the place. In this method, we simulate 
the object motion emploting large number of samples, 
each of which has different random component. The 
filter's output at each time step is an approximation 
of a profile of the probability distribution of objects' 
positions and represented as a weighted sample set 
{sin),n = 1, ..., N )  with weights xin', where t is the 
time and N is the number of the samples. 
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Figure 4: The rcsr~lts of a single state CO?IDENSA'I'ION 
algorithm(1cft) anti the mixed-state (~ON[)F:NSATION al- 
gorithm(rig1it): left figure shows the tracker didn't 

S '  X .  track after borlncr state, while in the right figure it 
tracks after bol~nce state successfully. 

Figure 3: Probability transition at one timestep in the 
CONDENSATION algorithm. 

next tiliic. step l)y the dvnaniical motlel p(xt lyt, XtP l ) .  
which is tlescril~etl as equ.(4). 

Fig.3 shows the iterative prediction applied to the 
sample-set. The top of the figure shows the weighted 

(n )  (n )  sample-set {(st- l ,  .rrtPl), n = 1, ..., N )  which is the out- 
put at the time t - 1. The first operation is to choose 
jth sample st/') from previous sample-set s : ~ ) ~  accord- 

ing to the previol~s weight .rri". Some samples with 
high weight may be chosen several times, while others 
with low weight may not be chosen at all. 

Every sample chosen from the weighted sample-set 
now proceeds to a predictivr step where new states of 
those samples are determined according to the predic- 
tion model p (Xt lX t - l  = Sj!,) (where Xt is a param- 
eter vector which describes the object's state). The 
final operation is the observation step where we calcu- 
late the weights by evaluating the observation model 
p (Z t  lX t )  (where Z is the observation. In our method, 
Z is the 3D positions of reconstructed objects), and 

obtain the sample-set (sjn), .rrjn)) of time t .  

3.1 A mixed-state model 

For example, a bouncing ball has two states, con- 
stant acceleration state and bounce state. In other 
words, it needs two prediction models p,(Xt lXt- 
(where i is the number of states, i = 1 or 2 for this 
example) to support the CONDENSATION algorithm for 
tracking of moving object. We call the supported al- 
gorithm as "mixed-state model", which automatically 
switches between multiple dynamical model. The ex- 
tended samples' state is defined to b r  

where y is a label for each variable of the current model, 
x is a vector in parameter space which describes the 
object's position and velocit,y, and N, is the number of 
state. The prediction model p(XtlXt-1)  can then be 
decomposed as follows: 

P(ytlXt-1) = P(yt = j lx t - I ,Y~-1  = i )  = Tzj(xt-l) 
(3) 

where the T,? are the state transition probabilities. 
Equ.(2) describes the prediction model. Given the old 
parameter vector Xt-l then we obtain the state yt 
(by equ.(3)), and we obtain the objects' state of the 

\Ve ol)tain the new samplcx state from the old saniplc 
state with i>q11.(2), ~cln.(:3), ;tntl equ.114). 

This niixed-state COWI)EI\;SATION algorithm is surn- 
rnarizetl as follows: 

First. we construct a "new" sample- 
set {sin) ,  .irjn), n = 1. ... iV} for t i~ne  t from the "old" 
sample-set {S(Y)~. .irln)l. 11 = 1. ... N )  at the time t -- 1. 
The 11"' sample of N new salnples is ohtair~ed by: 

1. Selection of a sample stin) = (zt("'. i ) :  

( a )  Generate a random rir~mber j with a prol~n- 
I~ility proportional to the weight . i r ~ ~ ) ) ,  . 

(1)) set st(") = s(') t - 1  

2. Prediction: sample's new state sjTL' is ~)redi(*ted 
I ( " )  

by prediction model p(Xt lXt- 1 = s , ). 

(a) We obtain the sample's state y l n )  by 
t (n )  F'(?/jn) = j lXt- = .$ ) = T , ~  (xtln)) 

(b) Then we obtain the xln) from 
t ( n )  ( n )  p(xln)lxt-1 = s t  ,y, = j )  

3. Measurement: the new position was weighted in 
terms of the observation data Z t :  

Finally normalize so that c,T,(~) = I .  Then, let t = 
t - 1 and go back to the first step. 

When objects' .motions are tracked with this algo- 
rithm, the state transitions 1',3 are the most important, 
and to be determined. But, in this papcr we set t,he 
state transition probability by hand (details are de- 
scribed in the next section). 

As preliminary experiments, we tried a mixed-state 
CONDENSATION algorithm to bouncing ball in sin- 
gle image sequence. The result is shown in Fig.4, 
where a tracker tracks the bouncing ball by using the 



where $1 is sample's initial state, n is sample number 
and WN is the total weight of initial sample-set. 

5 Experiments and Results of Tracking 
bouncing balls 

\Ve construct a model to track balls bouncing on a 
table. This case requires two states, s l  is "constant 

1 I tlyF acceleration state" and s2 is "bouncing state". 
The transition matrix T,) is given (manually) as 

3% 1:. - 
* +=+ 0.9 0.1 * ++ ( 1.0 0 . 0 )  (8) + 4 

where the component value mean transition probabili- 
ties. 

For example, the TI, means that if the previous state 
was .sl (constant acceleration state) then at the next 

Figure 5: The failure result of tracking two balls in time stat,e remains sl with probability 0.9 and transits 

frames (a)26, (b)27, (c)30, and (d)32 t,o s2 with probability 0.1. We set the model as follows: 

mixed-state CONDENSATION algorithm and the stan- 
dard CONDENSATION algorithm. In Fig.4 the symbol 
"+" shows the center of tracker at each time t .  The re- 
sult demonstrates that the mixed-state CONDENSATION 
algorithm improves tracking performance in the case 
of plural motion states exist. When there are several 
motion objects, and occlusions between them occurs. 
However, this method fails to track multiple objects 
with a single image sequence; Fig.5 shows an exam- 
ple where "+" and "." also show the trajectories of 
centers of trackers. Initially, trackers tracked two balls 
separately (a), but after occlusion occurred (b) and (c), 
trackers didn't distinguish two balls (d). In this paper 
we introduce the method to overcome the effects of the 
occlusion by using multiple images. 

4 Implementation details 

Our purpose is understanding 3D dynamic environ- 
ment, so that we need to extend the mixed state model 
from 2D to 3D. We assign one tracker to one object 
and one state xt to one object. The state has six pa- 
rameters, three position parameters xt = (ut, vt, ht)T 
(where u and v are the horizontal positions, and h 
is the vertical position) and three velocity parameters 
it = (fit, itt, ht)T.  The state xt is described as follows: 

The sample's state dynamical model is given by 

xt = Axt-l  + Bwt (6) 
where A and B are the matrices of dynamical model, 
and wt is Gaussian system noise N(0, a,). We assume 
the transition matrix Ttj as constant and it depends 
only on the previous state, so we set Tt j(xt)  = Tij. In 
the experiments, the matrices A,  B and T were given 
by hand to distinguish the model states. 

For the experiments described later, the initial state 
x r )  of the sample set was given by hand as 

Constant acceleration model 

position transition is given as 

velocity transition is given as 

where a is constant acceleration which depends on the 
gravity and image frame rate (set manually in our ex- 
periment). 

Bounce model 

In the .s2 ("bor~nce state"), the transition models about 
horizontal positions u and v are the same as in the .sl 

("constant acceleration model"). 

vertical position transition is given as 

its velocity transition is given as 

where r is coefficient of restitution of the ball. which 
depends on the object's characteristics (e.g., shapes, 
materials . . .). 

We set six cameras in a room (Fig.6) to track mul- 
tiple objects moving around in the room. 

The image sequence contains two bouncing halls, 
whose radii are 10cm. They fall into the scene with the 
initial velocities. The horizontal velocities change at 
each timestep according to the Gaussian noise N(O,cr,) 
m/s (where a, = 0.01). 

We set the parameters of the model as con- 
stant acceleration a = 0.05 m/s2, coefficient of resti- 
tution e = 0.5, the standard deviations of the noises 
a, = 0.02m and a, = 0.05m respectively, and the num- 
ber of samples N = 100. The observation model 
p(Zt IXt)  is defined as follows. Now we obtain one 
tracker's sample which have the 3D position zt ,  then 
we think all the points in a sphere whose center is .u2 



Figure 6: The camera positions: six cameras are set up 
in this room whose size is 8mx 4mx3m 

(its radius is optional we set 0.05m), and project all 
the point in the sphere to all the camera images. If the 
projected point is observed as objects (projected in a 
area of silhouettes) at least in three camera images, 
then the sample is assigned with the weight propor- 
tional to the number of projected points in the area of 
silhouettes. The result is shown in Fig.7 and Fig.8. 

Fig.7 shows the reconstructed 3D trajectries of the 
two balls. Small angurations were caused by slight mis- 
syncronization of the cameras. Besides, the total recon- 
struction were rather well. 

Fig.8 shows the tracking result of the mixed-state 
CONDENSATION algorithm in 3D environment. Each 
figure contains six camera images respectively. In the 
images, the large circles show two balls and the small 
circles show trackers. In the initial scene (frame 2) 
there are two balls, and trackers are assigned respec- 
tively. Occlusions appears in one image (frame 7 and 
9 upper middle image), while another image has no 
occlusion. Therefore trackers are easily able to distin- 
guish the balls. When the bouncing occurs (in frame 
15 the white ball bounce), the system can track the 
halls by using the mixed-state CONDENSATION algo- 
rithm. Even if one camera could not observe the ball 
(frame 20 upper left and upper middle images), track- 
ers tracks the two balls res~ectivelv because other cam- 
eras observed the balls. 

6 Conclusions and Future Works 

The robust tracking of multiple objects in an im- 
age sequence is proposed in this paper. We extended 
the 2D mixed-state CONDENSATION algorithm to 3D 
to realize the robust tracking. We track multiple ob- 
jects successfully by using multiple cameras to reduce 
noises and mutual interferences. If some cameras had 
occlusions and did not observe objects, other cameras 
having no occlusion in the same frame tracked com- 
pletely. For practical use, the total system must work 
automatically. For example, the automatic initializa- 
tion remains as an interesting problem. 
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