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Abstract 

Attaching visual tags such as barcodes to some elements 
in a scene allows applications such as navigation, handling 
industrial objects, or augmented reality. In the past few 
years, a new type of non-visual tags has been the object of 
intensive developments: Radio-Frequency (RF) Tags. In 
this paper we present the architecture of a machine vision 
system that uses RF Tag identification (RFID). RFID en- 
ables detecting the presence of an object, which polyhedral 
model and properties are remotely retrieved from a knowl- 
edge network database. This model is used for object 
registration by projective invariant matching. Our system 
not only facilitates the problem of object identification and 
registration to a model, but also allows new Tag-Based 
applications to be built around the concept of ubiquitous 
objects. 

1 Introduction 

For human observers, the world is full of items that play 
the role of tags: brand names and logos, road signs, sym- 
bols, gestures and poses, advertisement jingles, etc.. . Each 
of these tags can be interpreted according to one's experi- 
ence and behavior characteristics. 

Autonomous machine vision systems have been de- 
signed that handle visual tags [I]. Such systems ease the 
process of knowledge-based 3D scene analysis and object 
recognition, since each visual tag is a key to a specific ob- 
ject model. However, when relying on visual tags, the 
system has to accurately detect remote tags, which is sub- 
ject to occlusion and errors (due to noise, degradation of 
the tag's aspect, etc ...). In an IT-based approach, visual tags 
are not of very practical use because they are not designed 
to be re-writable. Moreover, there is no unique standard for 
product encoding. 

A new tagging technology has emerged in recent years 
and is being adopted by a growing number of product 
manufacturers, security companies, banks and many others 
(recently individuals have been tagged using this technol- 
ogy): RF Tags, also known as Electronic Tags. 

RF Tags are small devices (transponders) that contain an 
antenna and can communicate with a tag interrogator (or 
"reader") using electromagnetic coupling or propagation. 
They contain a few bits to 1Mb of data that is whether 
read-only or readable-writable [2,9]. There are efforts to 
create standard that aim at making RF Tag-based systems 
interoperable [2,6]. Advantages of RF Tags over classic 
visual tags such as barcodes include the fact that RF Tags 
can be embedded into the object whether barcodes are usu- 
ally put on the object's package and modify its appearance, 

they come in tiny sizes that make them discreet and appli- 
cable to small objects, and they can operate in tough 
environments (water, chemicals,. . .). Also, for some appli- 
cations where active sensing is needed they can come with 
a power supply (capacitor). 

All sorts of applications can be thought of with such a 
technology, leading to autonomous systems able of evolv- 
ing in an ubiquitous environment of tagged objects, 
dynamically refening to or modifying the common 
knowledge about those objects and taking the appropriate 
course of actions. 

For a computer vision system the first stage is naturally 
to estimate each tagged object's location and pose. The 
work presented in this paper is original in that it tackles the 
problem of 3D object identification and recognition to 2D 
images where the identification step is performed by the 
highly reliable RFID technology. Recognition is then a 
matter of retrieving the object's model and registering it to 
the image data. 

Fig.1 shows the general architecture of our RF 
Tag-based system, comprising two local sensing channels, 
a remote model retrieval module and the processing core. 
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Fig. 1: general architecture of our RF Tag-based computer 
vision system. Tag sensing and information retrieval, and 
visual sensing, are combined at the CPU level to perform 
knowledge-based 3D registration of the detected objects. 

In the following section we describe the 3 elements of 
our system, namely WID, the building up of object models, 
and image processing for object registration. Section 3 
deals with the practical implementation of our architecture, 
presenting some experiments of object registration. 
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2 A Tag-Based Vision System I 

RFID RFID was originally driven by applications con- 
cerning Electronic Article Surveillance (EAS) and security 
(checking luggage, granting access to facilities,. . .). In the 
last few years RFID has much diversified, and RFID 
manufacturers are striving to provide with an ever wider 
choice of hardware options. 

RF Tags can be categorized according to the following 
parameters, among others [2], [9]: 

. frequency range: typical RFID systems use frequencies 
in the VHF, UHF and up to the microwave band. Much 
effort is made for practical implementations of the 
125-135kHz range and the 13.56MHz and 2.45GHz fre- 
quencies. Higher frequencies naturally allow for higher bit 
rates. 

. activelpassive: whether the tag contains a power source 
or not. Active tags allow bigger operational range, whereas 
passive tags cost less and have longer lifetime. 

. chiplchipless: whether there is an embedded integrated 
circuit (IC) in the tag. Microchips allow greater functional- 
ities ( W ,  on-tag processing). 

. conventionalllow cost: the industry is pushing towards 
the achievement of low cost tags that will overcome limita- 
tions due to the cost of integrating RF tags. 

Besides, RF tags come in all types of shapes, ranging 
from tiny devices to rigid rings of alloy or flexible lami- 
nates, etc.. . allowing to adapt them to objects of various 
sizes and shapes. 

In our application of object registration, we use smart 
card shaped, 2.45GHz, passive RF tags with chips that 
support W and multiple tag detection. Each tag contains 
only a unique identifying code, which means that the entire 
object related data management is handled through the 
network database. The operational distance of the system is 
about Im when facing the antenna. 

Our application is original in that it resorts to RFID to 
assist image analysis. We argue that RFID is particularly 
suited for such problem, since the detection of RF tags is 
unambiguous and error-free itself. Whereas visual tag de- 
tection is subject to noise and orientation error, RF 
detection makes it obsolete (except for the cases where 
reflections on metallic surfaces or absorption by water cre- 
ate perturbations of the RF signal). On the other hand, 
because RF tag detection is pose-independent, no prior 
information is available concerning object loca- 
tionlorientation. 

Logic Models for Physical Objects In this study, object 
description is the process of creating a logic model of a 
physical object. It is a complex problem, and a general 
endeavor is bound to be unsatisfactory for specific applica- 
tions [6]. In our case, discriminative and manageable data 
to represent object geometry are needed, whereas other 
existing standards focus on other aspects such as logistics 
and trade. Among standards for structured data exchange 
on the Internet, we can cite EDI, UDDI, ebML and DCMI, 
each being supported by different economic partners. Fig. 2 
shows the general classification we have chosen for object 
description. We focus on object geometry and location, 
leaving other elements unspecified at this stage, as they are 
not determinant for our application. 
We use XML as a description language for object model 
data, making use of its ease of editing and parsing, and its 
popularity as a language for data sharing on the Internet. 
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Fig. 2: overview of our object model description. The tag 
ID is the primary key to the object data. Qualitative infor- 
mation is aimed at providing a human user an 
understanding of the object (for applications such as aug- 
mented reality). Qualitative information is to be processed 
by an autonomous system. In our computer vision system 
we focus on the description of object geometry and local- 
ization. Each type of information can be constant or 
variable. 

Object registration using projective invariance Our 

registration algorithm relies on point-set matching with 
projective invariants under full projective perspective. The 

basic result we make use of is taken from [7]. 
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Fig. 3: two sets of N points in correspondence by pinhole 
camera projection. The absolute 3D afine referential is 
(0, X ,  Y ,  Z) and 0' is the camera center. 

Consider a set of N 3D vertices describi g a given o - 
ject. We can extract a subset of 6 vertices Te ,O 5 i 5 5) .  
Using the canonical injection of the 3D real space into the 
3D projective space, each of these vertices can be repre- 
sented by 4 homogeneous coordinates (x, , Y, , z, , T, ) . 
3D projective invariants of the 9 remain constant for any 
transformation of the 3 rojective space undergone by 
the 4 . For the subset r43 , three independent such in- 
variants can be formed as follows: 

M,M; I ,  =- M,M; ,I2 =- M,Mi 

M:M2 
M;M, 9 '3 = - 

M;M, 
(1) 

where the following 4x4 determinants appear: 

Mk = I e . . . 4 - 2 e . . . < ~ /  

M; = 14...4-24 ...<&I (2) 

We note p, the projections of the 9 onto the 2D pro- 
jective space representing the image plane. Each of the p, 



where 3x3 determinants are computed as: 
I registered I 

has homogeneous coordinates (xi, y, ,ti) . Thus we get the 

With these notations, and the only hypothesis that there 

is 3D-2D projective correspondence between the 2 subsets 

of points, we have the necessary condition [7]: 

Null determinants create degenerate cases in the rela- 
tionship. Therefore these cases, corresponding to coplanar 

compute 2D 
cross-ratios 

following 2D projective invariant cross-ratios [7]: visual 
sensing 

Fig. 4: chart of our registration algorithm. The 2D 

cross-ratios of eq.(3) are computed after extraction of the 

2D image feature points. On the RFID and knowledge da- 

tabase side, the object model is retrieved in parallel. 
Projective matching then consists in determining the 3D 

points that best satisfy the condition (6). 

detect and group 2D 
feature points {pi} 

Making use of this observation, we devise the registra- 
tion algorithm shown in Fig. 4. The two sensing channels 
(visual and tag) simultaneously provide with data are com- 
bined after extraction of the visual features. The next 
section deals with the practical problems encountered when 
implementing this method. 

. m12m14 . 
I ,  =- m12m35 

, I 2  = - 
m12m14 m12m13 

points in 3D, must be avoided. Eq.(5) can be written as a 3 P ~ ~ ~ H ~ ~ ~  implementation 
quadric equation in a 4D vector space: 

Li2 - i4 (i4 - l)i3 - (i2 - l)i, 

and & = 0 (6) 

with I =(1,,12,13,14 = l ) T  

projective 
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Now, replacing P5 with any of the remaining 
N - 6 object vertices 4,  and provided we know its 2D 
projection p, , we can form a system of N - 5 terms 
En as in eq.(5), where n is the index of the 6-point subset. 
All the 6-point subsets have points Po, ..., P4 in common: 
those points form a projective basis and the 3 invariants are 
in fact the projective coordinates of the sixth point in this 
basis. Keeping only those terms corresponding to 
non-degenerate cases and visible points, the following 
3D-2D necessary condition of projective consistency can 
be expressed as: 

I 3  =- ,I4 =- 
m ~ 2 m 1 3  m14m25 object 

detect object and 
retrieve 3D points {Pi} 

where E is a vector of global inconsistency. If K is 
the number of non-degenerate equations as in (5) that we 

can form with those object vertices which are not occluded, 

we have: 

E=[E,  E, ... sKIT (7) 

Eq.(5) expresses that the term noted& is a measure of 

projective inconsistency of a 6-point subset. Therefore 

E defined in eq.(7) represents a term of global projective 
inconsistency of the set of relevant points. 

Our system, which three main components we presented 
above, will eventually be integrated in an autonomous 
computer vision system. At this stage we seek to validate 
its feasibility. To that end, we focus on the most critical 
element, namely the object model registration to the image. 

The performance of the registration method critically re- 
lies on a robust 2D feature extraction and grouping. Ideally, 
we should be able to detect all the salient feature points 
(comers) belonging only to the object to register. We are 
currently performing experiments and calibrating our sys- 
tem using Ando's OMNIVAR comer detection tools [I]. 
However, in order to increase the robustness of the object 
feature detection and grouping, region-based segmentation 
(on texture, color or gray similarity) is desirable to isolate 
object points and eliminate spurious points. 

Moreover, in order to avoid degenerate cases when 
computing the projective inconsistency between a set of 
2D feature points and a given set of 3D vertices, we need 
to ensure that: 
J p, ,..., p4 correspond to, i.e. they are projections of, 

object points Po ,..., P4 (resp.) that form a projective basis. 
This is realized if no subset of four points among the five 
object points is coplanar in the 3D affine space. When con- 
sidering polyhedral objects, we can have a key to the 3D 
configuration by looking at the 2D edge connection of their 
projections. In general however, we have no information a 
priori, but we can assume that the more complex the object 
is, the less likely we are to be faced to degenerate sets, and 
the more simple it is, the easier it is to detect coplanarity of 
points and discard degenerate point sets. 

J an additional sixth image feature point is not the pro- 
jection of a point P5 that is coplanar with any four points 
from the projective basis Po ,..., P4 . 

Fig. 5 shows a registration test performed on a L-shaped 
polyhedron. The polyhedron's wireframe model is back- 
projected on the image, which permits to qualitatively 
assert the accuracy of the registration. 



Fig. 5: registration test on simple polyhedral shape. Feature 

points are picked manually. The registration (c) with points 

(marked with white labels) as chosen in (a) gives JJEJI = 

8.70E-3. In (d) we have llEll= 8.08E-4 

We have carried out experiments with objects of poly- 

hedral shapes. Each of them is attributed a RF tag with a 

specific Tag ID, allowing to retrieve its wireframe model 

stored on a remote XML database server. For the sake of 

experimentation tags are waved before the antenna and not 

attached directly to objects. The successful registration 
results are presented in Fig. 6 for 2 object models. On each 

view the feature points used for projective matching are 

marked with white labels. Those features are picked manu- 
ally from the set of points computed by corner detection 

[I]. Indeed, we are still working on devising a robust fea- 

ture grouping algorithm suitable to our method. 

Conclusion 

We have presented an architecture for knowledge-based 
object registration where efficient object detection and 
knowledge retrieval is achieved thanks to the promising 
RFlD technology. Such architecture aims at bridging 
physical objects and their quantitative and qualitative rep- 
resentations. The object registration algorithn~ we have 
devised uses projective matching of image feature points 
with 3D object data. It has been validated experimentally 
on some test images, and needs to be integrated with an 
efficient low-levelf feature extraction tool and be adapted to 
deal with special degenerate cases, subjects currently under 
investigation. 

We believe our demo application to open new perspec- 
tives in domains where automatic systems need to perform 
fast and accurate object registration, and more generally 
when an automated system is expected to acquire a "deep" 
understanding of physical objects. 
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Fig. 6: experiments of object registration for validation of projec- 

tive ~natching algorithm. Registration is performed for 2 

polyhedral models. each wit11 a set of set of 7 matching points. 




