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Abstract 

This paper describes a method to recover entire 
3D shape of a building from an image sequence. 
This is a kind of "Shape and Motion recovery" prob- 
lem, whereas conventional methods do not work well 
with images taken around a large object in near dis- 
tance. Since such image sequence is a set of partial 
observations, 3D recovery becomes unstable. We 
first discuss the property of local minima of the 
nonlinear optimization function, and then describe 
a procedure to find the global minimum by avoid- 
ing pseudo solutions. Experiments using real images 
have shown that the proposed method successfully 
recovered 3D shapes from eleven sets of image se- 
quence. 

1 Introduction 

This paper presents a method for recovering en- 
tire 3D building shape from an image sequence, 
based on the Shape and Motion recovery techniques. 
Images are taken at  sufficient points to cover entire 
building, and are assumed to be taken at  near dis- 
tance from the building located in crowded urban 
area. In such a situation, each image contains par- 
tial observations of the building and the 3D shape 
recovery becomes difficult problem because there are 
many local minima in solving nonlinear equation. 

Such difficulty is not considered and discussed 
fully in prior researches. Many conventional shape 
and motion recovery methods are proposed and they 
avoid this difficulty by assuming some restrictions to 
the images, implicitly or explicitly. In the Factor- 
ization met hod proposed by Tomasi and Kanade[l] , 
images are assumed to be well approximated by lin- 
ear projection, i.e. images are taken from far dis- 
tance compared to the object size. Also in the 
building shape recovery method by Koch et.a1.[2], 
camera trajectories are assumed to be relatively far 
from the objective buildings compared with its size, 
and hence each image contains almost all part of the 
building with relatively small perspective distortion. 
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In the urban situation, however, buildings are 
so densely located that their images inevitably be- 
comes close-ups, where each image contains limited 
part of the building. Thus the feature point cor- 
respondences become very sparse with the conse- 
quence that the objective equation has many local 
minima. To recover 3D shape and camera position 
from such image sequence, we need to deal with such 
local minima in the optimization process. 

To recover entire shape of a building in realistic 
situation, we should deal with close-up images which 
have sparse feature point correspondences and have 
large perspective distortion. To cope with this prob- 
lem, we propose incremental 3D shape recovery pro- 
cedure. The key idea of our procedure is that we in- 
troduced trial-and-error search for our optimization 
process in order to find the optimal solution, instead 
of deterministic procedure. Note that, although our 
procedure automatically recovers 3D shapes with 
many image sets, some human controls are neces- 
sary to recover correct shape for difficult image sets. 

In the following sections, we first formulate the 
problem, then propose procedure to avoid local min- 
ima. Finally, we present experimental results for 
several real image sets to show effectiveness of our 
method. 

2 Entire Building Recovery 

2.1 Formulation 

Shape and motion recovery from an image se- 
quence, is formulated as nonlinear least-squares 
problem[3] which minimizes the sun1 of squared re- 
projection errors. Specifically, 

arg min Iufp - P[Rfsp  + tf]I2 (1) 
S t R  

(f,P)ES 

where s, is the unknown 3D coordinates of p'th fea- 
ture point, R f , t f  are the unknown rotation and 
translation of f ' th camera, ufP is given 2D coor- 
dinates of p'th feature point in f ' th image, S is the 
set of indices (f, p) over which the summation is cal- 
culated, and P denotes perspective projection. 

Given initial value of the shape s, and the 
camera position R f ,  t f ,  optimal solution is calcu- 
lated by nonlinear least-squares algorithm[3] such 
as Levenberg-Marquardt method or Preconditioned 
Conjugate Gradient method [4]. 
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Figure 2: Point reversal. 
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Figure 3: Camera reversal. 
Figure 1: Local minima of the problem. 

2.3 Analysis of Local Minima 
2.2 Avoiding Local Minima 

Since, there exist many local minima for this 
problem, occasionally, final estimation becomes one 
of them according to the initial value. Especially in 
the case of near-distance images, many local min- 
ima exists. For the feature points and camera posi- 
tions which are illustrated in fig.l(a), recovered 3D 
shape and camera positions become as fig.1 (b) when 
we use straight forward optimization to the whole 
dataset at  once. 

Problem difficulty can be characterized by 
amount of overlapping feature points among each 
image. This is evaluated by the ratio of size of S to 
f x p. Hereafter, we refer this amount as appearance 
ratio. Experimentally, many local minima appears 
in optimization process if this ratio is low. 

To avoid such local minima, we propose an incre- 
mental 3D shape recovery procedure. Denoting Si 
as i'th subset of S, the procedure can be summa- 
rized as a searching process of Si where optimal so- 
lution can be obtained for every Si by using R(Si-l) 
as initial value, where R(Si-1) represents resulting 
solution of Si-1. We start with some small set So 
with which the associated shape and motion can be 
stably obtained without a priori initialization[3, 41. 
Then gradually expand Si until it gets to whole set 
S .  

Occasionally, in the searching step, the situation 
that no suitable S, can be found occurs. In such 
situation, we need to backtrack to prior step, and 
choose different Si- 1. This set expansion procedure 
is simiIar to Tomasi and Kanade's strategy(l1, but 
the procedure of backtracking which is key part of 
local minima avoidance, is not considered in their 
method, and this is very important in nonlinear op- 
timization process. Our goal is to find the path 
{So, S1, ..., S,) such that the resulting optimal val- 
ues R(Si) can be obtained by using R(Si-l) as ini- 
tial value. Hence obtained result R(S,) is global 
minimum of the underlying equation. 

In the optimization process, if resulting residue 
of equation(1) becomes relatively high, we can eas- 
ily say that the considering set Si is inappropriate 
and choose another set. However, in some situa- 
tion, it is very difficult to choose another set with 
which the resulting shape becomes global optimal. 
In most case, they are classified into two following 
categories. 

1. point reversal 

In fig. 2, the position of newly estimated point 
differs between left and right images. Feature 
point positions in the left are optimal, while po- 
sitions in the right are local minimum. This is 
partial depth reversal problem. In prior Shape 
from Motion research, non-partial depth re- 
versal problem is mentioned[3], where recov- 
ered depth of each point is coherently reversed. 
However, in our near-distance case, partial fea- 
ture point reversal is observed. 

2. camera reversal 

In fig. 3, the position of newly estimated camera 
differs. Camera positions in the left are opti- 
mal, while the right ones are local minimum. 
This is also connected to depth reversal prob- 
lem. This happens due to low appearance ratio. ' 

If the appearance ratio is loo%, this situation 
will not occur. 

In such case, reselection of Si is necessary, while 
oridinary expansion is just used in usual case. In the 
next section, reselection procedures are described. 

2.4 Optimization Procedure 

OP Here, we describe the operations LSL-1 4 Si 
which indicates the selection or reselection process 
of Si from Si-1. Although the selection of Si is ar- 
bitrary, we used following selection scheme. Si is 



characterized by 3 variables, (s, e, L). The indices 
(f ,  p) in the set S, satisfies following 2 conditions. 

(a) The image number f should be in the range 
s L  f < e .  

(b) The point number p should appear at  least L 
times in the set. 

Mathematically, L in condition (b), must be 
larger than or equals to 2, because 3D position of 
a feature point observed in single image cannot be 
recovered by triangulation. Moreover, it is known 
that the 3D position calculated from only 2 images 
are unstable. To avoid these unstability, one should 
first recover with relatively large L which yields re- 
liable estimation. Afterwards, decrease L gradually 
to 2 so that 3D position of every feature point is 
recovered. This control of L is also useful for local 
minima avoidance. If the estimation is considered 
to be a local minimum, increase of L might remove 
unstable feature points and/or camera. 

Operations of Si-l 3 Si which we used is listed 
as follows. 

1. Expand the set by increasing e. 

2. Expand the set by decreasing s. 

3. Expand the set by decreasing L. 

On the other hand, to avoid local minima, oper- 
ation for reselecting Si is needed. Operations which 
we used is as follows. 

1. Shrink the set by increasing L. 

Our goal is to find the path Si which yields true 
final estimation. For this purpose, a heuristic search 
method is employed which selects one operation at 
each step. Starting with SiPl, first one of expan- 
sion operation is selected to make a candidate of Si. 
If associated residue becomes larger than a thresh- 
old, another operation is selected to produce an- 
other candidate that gives better residue. If no im- 
provement is made or no other operation is avail- 
able, backtracking is performed to reselect Si-1. 

In the procedure, a local minima is detected by 
simple thresholding. However, this thresholding 
sometimes fails. In such case, manual control is nec- 
essary. 

Also, selection of initial set So is very important 
to achieve optimal solution. We used following cri- 
terion~ for selection of initial set. 

Appearance ratio is high. 

Relatively large L. 

If camera positions are roughly known, use im- 
ages which have long baseline. 

Optimal solution can be calculated with the set. 

Figure 4: Two images of The Hiroshima Atomic 
Bomb Dome. 

3 Experiments 

We have applied our algorithm to 11 real image 
sets and successfully obtained 3D shapes and cam- 
era positions. Here, we show the results of two of 
these experiments: relatively easy one and relatively 
difficult one. 

Fig. 4 shows 2 out of 29 images of the Hiroshima 
Atomic Bomb Dome, in which 2D coordinates of 
feature points are also shown. There are 469 fea- 
ture points to represent the building shape, which 
are selected and matched manually. No image con- 
tains whole view of the building as shown in these 
pictures. Appearance ratio is 17%, which means 
it is relatively easy to recover 3D geometry. We 
start with 5 images and finally obtained 3D shape 
and camera positions shown in Fig.5. Four image 
sets including this set were able to recover their 3D 
shape and camera positions automatically. 

Fig. 6 shows 4 out of 198 images of a gymnasium. 
There are 300 manually selected feature points to 
represent the building shape. Some images just con- 
tain limited part of the building as shown in figure. 
Appearance ratio is 5.1%. Thus, it is very difficult 
to recover 3D geometry. Left side of Fig. 7 shows 
initial estimation associated with the set So which 
contains 20 images and 28 feature points. Right side 
of the Fig. 7 shows 3D shape and camera positions 
of intermediate step in search process. Many trial 
and backtracking were performed to produce final 
estimation shown in fig. 8,9. This is t,he entire build- 
ing shape with positions and orientations of cameras 
displayed around it. From the recovered shape, we 
can say that rectangular shape and connecting an- 



(a) Recovered 3D shape and camera positions. 

(b) Side view of the dome with texture image. 

Figure 5: Reconstructed Dome 

gles of each building edges are well recovered. In this 
experiment, human decision of backtracking was oc- 
casionally needed as the problem is very difficult. 

4 Conclusions 

We proposed a method to recover entire 3D build- 
ing shape from near-distance images which uses 
searching technique with backtrack to find optimal 
solution. 

While this recovery problem is directly formu- 
lated as nonlinear optimization problem, we em- 
ployed searching technique for finding optimal solu- 
tion. The optimization process is formulated as path 
finding problem. Each node of path is the subset of 
indices over which the cost function is calculated. 
We employ heuristic search method to find path to 
avoid the local minima of the associated nonlinear 
cost function. When this heuristic search fails, one 
can manually control to search another path. 

Experimental results on building image sets show 
the efficiency of our proposed method. 
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