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Abstract 

A method of model-based object recognition for a 
cluttered depth scene including multiple objects is pro- 
posed. A novel model representation, named depth 
aspect image, is also defined as an orientation stan- 
dardized appearance from the original depth data of 
objects, which is transformed through tuples of three 
barycenters defined within regularly defined voxels. 
A robust matching scheme, named least quantile of 
residuals, can achieve not only object recognition with 
depth aspect images but also verification with candi- 
date models. The sparsely distributed barycenters and 
the robust matching make the ICP-based rough reg- 
istration and the following verification process much 
faster and more reliable. In this paper, we show recog- 
nition experiments on 100 scenes contained multiple 
objects from a library of 4 models. 

1 Introduction 

Object recognition and position estimation of given 
models in objective scenes have been one of the im- 
portant technologies in the area of robotics and au- 
tomations. To deal with complex range data includ- 
ing multiple objects, segmentation helps finding the 
known models [I], but accurate localization of free-form 
shapes is generally difficult. Recently, some approaches 
have been proposed for free-form shapes, which have 
novel data representations based on local structures 
for object recognition. Splash represents relations of 
surface normals by the three-dimensional segments [2]. 
Point signature is a curve which expresses depths of 
surfaces from the tangent plane of a reference point 
[3]. In these methods, the surfaces around a reference 
point are accumulated along a three-dimensional curve. 
Another representation called spin image [4] using in- 
tensity images is proposed, and as an advanced version, 
spherical spin image [5]  is also proposed. Matching 
with these representations finds the relation between 
points of the model and ones of the scene. Then some 
pairs of them are required to obtain sound congruent 
transformations. They are almost fine point-wise rep- 
resentations causing large computation and the resolu- 
tion of representation is strongly dependent on the one 
of row range data. So we propose a novel representa- 
tion called depth aspect image [7], which is a control- 
lable two dimensional representation with local depth 

- - - - - - - 

'Address: Kita 13 Nishi 8, Kita-ku, Sapporo 060-8286 Japan. 
E-mail: takernee. c o i n .  eng. hokudai . ac . j p  

' ~ d d r e s s :  Kita 13 Nishi 8, Kita-ku, Sapporo 060-8286 Japan. 
E-mail: kanekosacoin. eng. hokudai .ac . j p  

distribution and cooperated with a distinct coordinate 
scheme called regular framing. 

Furthermore, robust algorithms have been proposed 
and applied to image matching with noises and out- 
liers [9], and such ill-conditions are occurred due to 
occlusion, clutter and non-overlap parts in depth as- 
pect images. Then we introduce a robust statistical 
estimator called least quantile of residual, which can 
be utilized for not only the image matching but also 
the three-dimensional model verification. 

References for constructing representations of range 
data are generally selected from vertices or some ge& 
metric features in range data. Since the features have 
rather sDarse data structures than the vertices in gen- " 
eral, feature-based algorithms can achieve low compu- 
tational cost, but these depend on the capability of 
reappearance [8]. Then we introduce regular framing, 
which can derive regularly arranged points for reference 
from range data automatically. Moreover, the sparsely 
distributed references are useful for the verification. 

The rest of our paper is composed as follows: The 
proposed method is outlined in Section 2, including 
definitions of voxels and depth aspect images. Match- 
ing and verification through depth aspect images and 
a robust estimator are explained in Section 3, and then 
how to use ICP algorithm in the proposed method is 
also denoted. Section 4 shows experiments and analysis 
of them. Section 5 concludes the paper. 

2 Representation 

2.1 Outline 

Fig.1 shows an outline of the proposed method 
which is divided into two processes: model learning 
and object recognition. In the learning process, a set 
of model range data is segrnentalized into voxels by 
regular framing. It is standardized by a local three- 
dimensional coordinates, which is called aspect coordi- 
nate frame, hereafter ACF in short. According to the 
ACF, the model range data is projected into a depth 
aspect image, hereafter DAI. Multiple model DAIs con- 
struct a database, which contains all possible DAIs 
with corresponding ACFs for each models. In the 
recognition process, a DAI of the scene is created in 
the same way of leaning and matched with DAIs in 
the database. A candidate model is chosen from the 
database according to the optimality and the trans- 
formation between them is calculated from the pair of 
their ACFs. ICP algorithm can make correspondences 
between the candidate and t,he scene range data. And 
then the correspondence is robustly verified by evalu- 
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Figure 1: Outline of the proposed method 

ating a fit. After renewal of ACF, in order to recognize 
mult,iple objects in the scene, these processes are iter- 
ated until ACFs can not be constructed. 

2.2 Regular framing 

A set of range data consists of points P = {pi = 
(x,, y ; , ~ ~ ) ~ ,  1 5 i 5 [PI)  and patches R = {Ri, 1 5 
i 5 IRI), where IAl is the number of elements in a 
set A. Each patch Ri = {rijlrij E P, 1 5 j 5 IRil) 
is formed by three or four vertices. A surface normal 
calculated by cross product is defined on each patch 
as n ~ ,  , InR, 1 = 1. Matching is to obtain a congruent 
transformation that can make a set of range data cor- 
respond another range data. In order to realize such a 
t,ransformation, we need coordinate frames possibly de- 
fined bv a set of three axes or four ~oint ,s .  Therefore we 
int,roduce regular framing for this aim. Regular flam- 
ing is a segmentation of a set of range data into cubes 
called voxels, each of which is arranged in regular or- 
der and encloses the vertices. Fig.2 shows the outline 
of the regular framing. The voxel is characterized by 
two contents: a barycenter and a normal, which are 
calculated as averages of vertices and vertex normals. 
The voxel width A,, is determined through preliminary 
experiments and the direction of voxel arrangement is 
arbitrary. Let V = {vi = (Zi,y,,Zi)) be a set of all 
voxels, whose integer indices (Z;, 5, , Zi) represent a cu- 
bic piece vi = (Zi x A,, 5 x < (Zi + 1) x A,,,ci x A, 5 
y < ( $ + I )  x A,,,& x A,, 5 z < ( Z i + l )  x A,). Let 
Pi = {pij = p , J p i  E v , , l  5 j 5 JP;() b e a s e t  ofpoints 
included in vi, and B = {bi = villPil # 0) be the set 
of non-null voxels. Next, the voxel barycenter ui and 
normal n, are calculated as follows: ui = xp/ k, 
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Figure 2: Regular framing of range data. 

and n, = 25- where n, = Cr,,EO, +(R,)nn, ,  where 1% I ' 
+(R,) expresses how many nodes of R, are included in 
b, - 

2.3 Aspect coordinate frame (ACF) 

To define basic coordinate frames for estimating the 
congruent transformation, we generally need some ref- 
erence points in P or B. Searching the reference points 
in P needs high computational cost,, and in another 
approach, some feature points, edges or corners, are 
possibly used as such a reference [8], however, it is not 
sufficient for free-form surfaces. Therefore we propose 
an approach of using voxels in B as references. We 
call such a basic coordinate frame as aspect coordinate 
frame, hereafter ACF. A 3-tuple of voxels is utilized 
here to define an ACF. Then the number of 3-tuples 
becomes O((BI3), which is rather high from a point of 
view of a processing cost, and we have a risk of combi- 
natorial explosion. So we introduce some restrictions 
on a 3-tuple, which can eliminate ill-defined combina- 
tion like collinear voxels or those which do not con- 
struct any feasible plane. Let (bi, bj, bk), (i # j # k) 
be a 3-tuple of voxels, where a distance between voxels 
can bedefined as Ibi-bjI = (2i-ZjI+I$i-yjI+lZi-ZjI- 
The restrictions on the 3-tuple are designed as: 

Jbj  - bil >_ AT.  (1) 
n i . n j > _ 0 , n j . n k > 0 , n k . n i 2 0 .  (2) 
Ib, - bil = (bk - bil. (3) 
(b, - bi) . (bk - b,) = 0. (4) 
((b, - bi) x (bk - b;)). ni > 0. ( 5 )  

Condition (1) is called minimum dZstan,ce re.striction. 
Condition (2) is ohservability restriction, which shows 
simultaneous obser\~ability of the three voxcls. Con- 
dition (3) is called equidistance restriction, which re- 
quests of the third voxel that it should lie in the equidis- 
tance to the other voxels. Condition (4), which is called 
orthogonality restriction, eliminates collinear voxels. 
We call condition (5) direction restriction, which re- 
quires the surface orientation around the ACF to be 
similar to the upper orientation of the ACF (the pos- 
itive orientation of z axis). The ACF can be defined 
through a 3-tuple u = (a , ,  u j ,  u k )  that are modified 
from the 3-tuple (bi, bjl bk) satisfying all the condi- 
tions from (1) to ( 5 ) .  A set of 3-tuples is represented 
as U = {u) and the number of element in U is K. 
The xy plane of the ACF is called base plane, here- 
after BP, onto which the depth around the .4CF are 
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Figure 4: Examples of DAI and its ACF. 

3 Object recognition 

Figure 3: Procedure of making DAI. 

mapped. Fig.3 shows the definitions of ACF and BP. 
The origin is ui and the unit vector e, passes through 
it and uj. The unit vector e, is defined as the nor- 
mal vector of the BP, and then the last vector e, is 
set so that it is orthogonal to both e, and e,. Let 
C = {C = (0,  ex ,  e,, e,)) be a set of ACFs. Therefore 
the number of element C is ICI = IUI = K. 

2.4 Depth aspect image (DAI) 

Each component of the set P is converted with re- 
spect to the ACF, resulting {P'k)r=(=l as follows: 

As shown in Fig.3, an aspect grid A = {al,) with the 
width A, and A, on the BP are defined. A DAI is 
defined on the BP by projecting the depths on the 
aspect grid along with the z axis of the ACF. The 
DAI is extracted from the BP in the range of f 4 LA, 
and f ;MA,. So the size are given by LA, x MA, 
and its resolutions along with each axis are given by 
A,, A, and A,. P' is projected along the z axis or- 
thogonally onto the BP. Each pixel of the DAI can be 
assigned its virtual brightness by the following proce- 
dure. If some depths are projected into a grid, the 

t 

value is max{Ei = [2 + 1281). Then Zi is clipped into 
0 < Zi 5 255. Fig.4 shows some examples made by 
the these procedures. The figure shows that DAI is a 
visualization of depth structure from BP. 

For each of models, multiple DAIS are constructed 
according to ACFs, and are registered into a database 
with corresponding c, u and s,  where s means the max- 
imal side length of u. 

3.1 Recognition process 

Fig.5 shows the recognition process which can be 
classified into two phases. In the search phase, after 
selecting a 3-tuple, the ACF is constructed and then 
the corresponding DAI is generated. It is matched with 
DAIS in the database in order. The optimal DAI gives 
a candidate model and the   air of ACFs constructs 
a congruent transformation from the candidate to  the 
scene. If the DAI matching is failed, another DAI is 
remaked by another ACF repeatedly until we find a 
solution. In the verification phase, the candidate fitted 
by ICP algorithm is verified by LQR. After a part of 
recognized range data are removed, the above proce- 
dures recursively applied to remains. 

3.2 Least quantile of residual (LQR) 

For comparing two histograms, the least median of 
squares principle can be well utilized for obtaining ro- 
bust matching between them in spite of gross or outly- 
ing components. In the proposed method, we introduce 
the robust statistical evaluator called least quantile of 
residual (LQR), which is defined as: 

f Q ( H )  = argmin 

where hi is the i-th level of a residual histogram and Q 
is the quantile parameter. If Q = 0.5, the above rule 
generates the least median of residuals estimate. This 
evaluator can be applied to  different histograms be- 
cause we can design the level of Q relative to problems 
at hand. 

3.3 DAI matching 

Let A = {ai) and M = {mi) be the DAI of the 
scene and the one from the database, respectively. Zero 
valued pixels in the DAI have to be eliminated before 
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Figure 5: Recognition process. 

matching because those have no information on depth. 
So we define overlapped pixels on the two DAIs as: 

where the number of overlapped pixels is defined as 
(A'[ = IM'I = Nam. Some noises and outliers due 
to occlusion by other objects may be appeared on the 
DAI as unexpected intensities. Then LQR is employed 
in order to match the DAIs robustly under these ill- 
conditions. Let T ,  = la: - m: 1 be a residual of each pair 
of pixels, then the histogram is written as: 

where 6( . )  is Kronecker's delta. The optimal DAI in the 
database indicates the candidate model so that it has 
the minimum fQ(HR) less than threshold FT. If not 
the case, anot,her 3-tuple is tried to be investigated. We 
introduce some procedures to speed up the search of 
DAI. Through the search, the model DAIs with largely 
difference from s are skipped over, and those having 
small area of overlap are also ignored. Due to the 
DAI matching by LQR, feasible initial positioning and 
point-wise relations can be roughly obtained without 
any extra expensive computation. Moreover the clos- 
est point search based on barycenters is faster than the 
original version. In the experiments, these parameters 
are set as Q = 0.6 and FT = 10. 

3.4 Verification by ICP and LQR 

Let c, and c, be the ACF of the candidate and the 
one of the scene, and P: = { p : )  be the set of points 
of the candidate transformed to the scene. Each trans- 
formed point p: is calculated as: 

Figure 6: Models. 

The fitted candidate is registered precisely by ICP al- 
gorithm [6J. Original ICP algorithm has some prob- 
lems such as local minima due to  the initial position- 
ing and/or a set of non-overlapping data. The result 
of DAI matching handles them. The initial position 
and posture are obtained through the DAI matching 
successfully. And we can select points of the candi- 
date, which are used for ICP algorithm according to 
the small residual pixels of matched DAIs. The voxel 
segmentation has another merit of fast computation of 
the closest point search although it provides an approx- 
imate solution. 

After ICP algorithm is applied, the candidate is ver- 
ified by the amount of total movement along fitting and 
by LQR with closest point distances. The histogram 
HD is made from the closest point distances D = {d , )  
between the transformed candidate and the scene. And 
we set Q = 0.25 in the verification phase because the 
whole model surface cannot be measured from one di- 
rection and the model surface may be blinded partially 
by other objects. Let E be the sum of the mean dis- 
tances of movement in ICP algorithm, and if the can- 
didate satisfies E < ET and f Q ( H ~ )  < 2, then it is 
accepted. In the other case, another DAI is tried to 
match. In the experiments, we set ET = fQ ( H R )  x A*. 
After getting the verified candidate, the range data 
congruent with it are modified so that they can be ig- 
nored by any following iteration. 

4 Experiments 

All the range data we used were measured by the 
laser range finder (MINOLTA VIVIDSOO). Fig.6 shows 
the models of toy cats, each of which was merged from 
the eight set of range data equally measured around 
every 45 degrees. Small holes and ill-defined patches 
on the integrated range data are modified by polygon 
editing tools. 

Table 1 shows the parameters for making DAI in the 
experiments. Table 2 shows the number of DAIs for 
each model created with under the parameters shown 
in Table 1, resulting the total number 6490. We have 
used 100 scenes including two through four models with 
random placement, which were put at from 600 to 1200 
mrn far from the range finder. These scenes also con- ., 
tained unknown objects like a floor, human hands, and 
so on. Fig.7 shows one example of recognition results. 

Table 1: Parameters for DAI. 
A, I 15mm 

T 1 3 
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Figure 7: An example of recognition result. 

The left figures in Fig.7 are the scene range data ob- 
served from the top and from the front respectively, 
and the right figures are the visualization of the four 
recognized models in the scene. Recognition and po- 
sition estimation of each model were successful, and 
they were recognized a t  599th, 1403rd, 1967th and 
3133rd steps, respectively, and then the DAIs of the 
scene was made 3432 times in total. 30 from them 
were matched successfully. Furthermore, two of them 
were rejected due to  the total movement in ICP algo- 
rithm beyond E T ,  and 24 of them were also rejected in 
the verification by LQR and the other four found their 
candidates successfully. It took 232 seconds in total 
using a PC with a Pentium 4 processor at 1.7 GHz. 
The resolution of each model in Fig.6 were (a)l.O4rnm, 
(b) l.O6mm, (c) 1.09mm and (d) 1. lOmm, respectively. 
On the other hand, the resolutions corresponding to 
each model were (a)2.22mm, (b)2.25mm, (c)2.36mm 
and (d)2.19mm, respectively. The effectiveness of the 
proposed method could be shown by the success on the 
data with these various resolutions. 

In order to  evaluate the performance of the method 
in the case of occlusion and clutter [4], occlusion is 
defined as: 

model surf ace patch area 
occlusion = 1 - 

total model surf ace area . (12) 

The occlusion rate is beyond 50 % due to the integrated 
range data. Next, clutter is defined as: 

points of models in  the scene 
clutter = 1 - 

total points in the scene . (13) 

The clutter is an appearance rate of points in the scene 
excluding relevant points to models. Then the clutter 
becomes zero if all the vertices in the scene are relevant 
to the models. In the case of Fig.7, the occlusions 

Table 2: Number of voxels and DAIs for each model. 
Alodcl I (a) I (b) I ( c ) 1 ( (1) 
Point 1 27068 1 31405 1 25233 1 25950 

4 .- 
+ recognition rate 
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Figure 8: Recognition rate and number of registered 
DAIs for voxel width. 
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Figure 9: Recognition states for clutter and occlusion. 
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for each model were (a)74.5%, (b)70.5%, (c)64.2% and 
(d)71.6%, respectively, and the clutter of the scene was 
13.4%. 

Fig.8 shows the recognition rate and the number of 
DAIs in the databases for several voxel widths. In or- 
der to examine a basic behavior for each voxel widths, 
the scene including the four models was chosen so that 
the occlusions were (a)61.8%, (b)63.1%, (c)56.3% and 
(d)64.3%, respectively, and the clutter was 0.0%. The 
small voxel widths increased the number of DAIs in 
the databases and raise up the recognition rate. If the 
widths were less than 17mm, all the four models were 
recognized successfully. Then the voxel width used in 
the experiments for the scenes was sufficient to recog- 
nize four models, and the database could be relatively 
compact. 

Fig.9 shows the result of recognition for 100 scenes. 
356 models were appeared in all the scenes, and 312 of 
them were recognized successfully (true positive), and 
then the rest could not be found in the scenes (false 
negative). It was worth noting that there was no false 
positives in the results. We found that increasing oc- 
clusion rate causes an increase of the false negatives, 
but it was inde~endent of the clutter. R.elation be- 
tween the occlusion and the recognition rate is shown 
in Fig.10. The average rate calculated from all the 
models in the scenes was 87.6%, however, it became 
99.6% except models whose occlusions were over 70%. 
Therefore the false negatives were caused by the insuffi- 
ciency of relevant surfaces to the models in the scenes. 
Other examples of experiments are shown in Fig.11. 
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Figure 10: Recognition rate versus occlusion. 

around a t,housand seconds. From the point of view of 
processing time, t,he efficiency of our method was not 
so high. We will consider about some other possible 
procedures for skipping inrelevant DAIS of the scene. 

5 Conclusions 

We proposed the recognition method for rigid ob- 
jects based on the depth aspect image constructed by 
regular framing. And we introduced the robust evalu- 
ator LQR which is effective both in the image match- $+:, 

Ing and in the verification. Voxels given b; the reg- 
ular framing of range data are also useful for quick 
search of the closest points in ICP algorithm and ver- 
ification. Through the experiments with 100 scenes 
including multiple objects with clutter and occlusion, 
the effectiveness of our method is confirmed. 
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