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Abstract 

This paper proposes a novel approach to constitut- 
ing all the feasible ways of folding, based on crease 
infomation obtained from an image of illustrations of 
general origami drill books. Since crease information 
from 2D plane figures is superficial and incomplete, 
how to only generate all the feasible ways is a prob- 
lem. This paper deals with this subject. 

Origami operations can be classified into basic oper- 
ations and complex operations. For the basic ones, we 
propose a method that can create creases correspond- 
ing to the operations on a sheet of extended paper 
called unfolded plan, and an algorithm, called origami- 
section method, that is used to test physical feasibility 
of basic operations. For the complex ones, we propose 
several algorithms to produce correct creases for each 
operation, which keep the consistency of the crease pat- 
terns under some geometrical constrains. Some exper- 
imental results are given to show the practical efficacy 
of the proposed methods. 

1 Introduction 

As international conferences on origami science has 
been held three times, researches related with origami 
are conducted in various fields such as mathematics, 
engineering and art. Most of the researches are done 
by mathematicians. They attempt to elucidate geo- 
metrical properties of origami by use of mathematical 
methods [I]. On the other hand, the study described in 
this paper is to generate feasible ways of folding step- 
wise during a virtual process of paper folding, based 
on a sequence of illustrations of origami drill books. It 
aims at constructing an interface to transform the 2D 
illustrations into 3D animation automatically. So, it is 
a completely new challenge. 

We have developed a recognition system that suc- 
cessfully extracts edges of origami and crease inform* 
tion from images of the illustrations [2]. Crease infor- 
mation includes both of the position and direction of 
a folding operation. To realize our objective by use of 
the crease information, there are three difficulties here. 
First, generating a folding operation means to create 
all the resulting creases on faces of an origami model 
in 3D virtual space. Obviously, the crease information 
obtained from 2D plane figures (illustrations) is super- 
ficial and incomplete, and not enough for what we want 
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to do. Second, given the incomplete crease information, 
many interpretations about the way of folding can be 
made. As the result, the creases cannot be determined 
uniquely. Finally, some methods which exclude infea- 
sible ways of folding are needed. To deal with these 
problems, we apply some geometric constrains existing 
among creases to limit candidate crease patterns only 
to those that correspond with feasible folding opera- 
tions. 

2 Definitions and Constrains 

Generation of creases is performed through a sheet 
of extended paper called unfolded plan. Using unfolded 
plans makes it possible to convert the problem of gen- 
erating a folding operation against a 3D origami model 
into the problem of generating the creases on a 2D 
plane. All the algorithms we describe in the following 
sections are based on such an unfolded plan. Before we 
introduce them, we first give some necessary definitions 
and constrains below. 

Folding operations of origami can be classified into 
basic operations and complex operations. Basic opera- 
tions only consist of mountain and valley folding, and 
the resulting creases have uniform attributes (moun- 
tain or valley). On the other hand, complex operations 
mainly include tucking in, covering and expanding, and 
produce the creases with mixed attributes (mountain 
and valley). 

When an operation is applied on a face of origami, 
the moving portion of the face is usually folded up (ro- 
tate 180 degrees around the crease). That leads to a 
restriction called flatness of the origami model. This 
restriction requires that during a folding process all the 
faces of the origami model must be in parallel. Neces- 
sary and sufficient conditions for the creases connected 
with an inner point of unfolded plan to keep an origami 
model flat are as follows. 

[Theorem] Local flatness conditions [I] 

i) The number of creases is even number. 

ii) INM - Nvl = 2 

NM : the number of mountain creases 
N v  : the number of valley creases 

iii) The alternate sum of the angle among each 
crease makes 180 degrees. 

iv) If the angle among adjacent two creases 
is obtuse, these creases' attribute (moun- 
tainlvalley) is equal. 



Since the creases generated on unfolded plan have 
to meet above theorem, these conditions are used in 
our proposed methods. 

Finally, we give the definition about origami- 
symmetry, a concept that will be frequently used in 
our algorithms, below. 

[Definition] Origami-symmetry 
In creases patterns in unfolded plans, if two creases 
C1 , C2 which make the mutually equal angle 
to certain crease Co exist, Cl,  C2 are origama- 
symmetry about Co. Then, the attribute or length 
of creases are not considered. 

This definition actually is based on local flatness 
conditions. 

3 Calculation Methods of Folding Op- 
erations 

3.1 Basic Folding Operations 

Some geometric rules exist among creases. There- 
fore, it is possible to calculate using the following char- 
acteristcs. 

i) Each terminal point of generated creases exists on 
the outside edges or shares a terminal point with 
the other generated crease. 

ii) Two generated creases which share a terminal 
point are symmetrical to a certain existing crease 
and have different attributes (Mountain/Valley). 

3.1.1 The Algorithm of Generating Creases 

The position of a crease is determined on a face spec- 
ified by crease information. However, this crease is 
imperfect. Because some creases must be generated 
when two or more faces are folded. Then, the alge 
rithm which generates suitable creases is shown below. 

Creases generation algorithm 

C = {q)  : the generated creases 

= pm) : sets of terminal points of creases Q =  qn) 

(STEP 1) i t 0, m t 0, n t 0, C = {). 
A crease g is generated to the face specified in the 
input. Two terminal points of Q are po and go. 

(STEP 2) If both pm and q, are on the outside edges, 
C is outputed, * Stopped. 

(STEP 3) If pm is on the crease e;, the crease q+l 
is generated symmetrically to e;. Then, the at- 
tribute (Mountain/Valley) of c;+l is antithetical 
to q. Moreover, the terminal point other than 
Pm of C;+l is pm+l. i t i + 1, m t m + 1, 
C t C u { q ) .  

(STEP 4) If q, is on the crease e;, the crease q+l 
is generated symmetrically to e;. Then, the at- 
tribute (Mountain/Valley) of c;+l is antithetical 
to c;. Moreover, the terminal point other than q, 
of C;+l is q,+l. i t i+l, n t n+l ,  C t CU{c;). 
+ (STEP 2). 

By using this algorithm, consistency of creases can 
be supported. 

3.1.2 Origami-section Met hod 

Some problems are mentioned in case a basic folding 
operation is calculated. Fig.l(a) is shown the way of 
folding that is impossible physically, because the moved 
face run into other faces. Moreover, since crease infor- 
mation is command only to fold by the crease specified 
in the input, there are many considered ways of fold- 
ing. In Fig.l(b), many ways of folding occur because 
of the defference of the interfolded position of a face. 
In order to solve these problems, all the feasible ways 
of folding must be consituted without constituting the 
impossible ways of folding. Therefore, we propose the 
calculation method using sections of origami. The sec- 
tion of origami is the section which cut the origami 
model perpendicularly to the generated crease. A sec- 
tion is expressed as a set of line segments. 

(a) Impossible way (b) Many considered ways 
of folding physically of folding 

Figure 1: Uncertainty of a basic folding operation 

The acquisition algorithm of origami section 

C = {q)  : a set of creases which cross line segments 
of a section 

S = 1s;) : a set of line segments of a section 

P = {pi) : a set of terminal points of line segments 

0 : the existing crease which the symmetrical axis 
to the genarated creases 

(STEP 1) Two segments perpendicular to the gener- 
ated crease Q are generated. The segment which 
has terminal points on the outside edges or 0 is 
so  and another is s l .  The terminal point of sl on 
Q is po and the terminal point of sl on cl is pl. 
S t {so,sl), P {&b,pl), i t 1. 

(STEP 2) If pi is on the outside edges or on 0, + 
Stopped. 

(STEP 3) If pi is on the crease q ,  si+l that is sym- 
metrical with si to c; is generated. Then, the 
terminal point which is not pi of Si+l is pi+l. 
S t S U { s ; + l ) , P t P U { p ; + l ) , i t i + l  
+ (STEP 2). 

Thereby, the section of origami is obtained as a set of 
line segments S. Several kinds of such sections are ac- 
quired at  equal intervals to all generated creases. The 
physical folding possibility is judged based on these 
sections. The judgment algorithm is explained using 



Fig.2. First, it investigates whether the moved face 
can be interfolded into the hithermost "trench" (a val- 
ley between a face and a face) in Fig.2(a). In this case, 
since the length of the section of the moved face is 
shorter than the depth of the trench (dl > do), it is 
possible to interfold. Next, it investigates whether the 
moved face can be folded up to the following "walln (a 
mountain between a face and a face) in Fig.2(b). In 
this case, since the height of the wall is below a stan- 
dard based on the generated crease (dl - d2 < 0), it 
is possible to fold up. In the same way, when it inves- 
tigates the second trench, the length of the section of 
the moved face is longer than the depth of the trench 
(dl - dz + d~ < do) in Fig.2(c). Therefore, the moved 
face can not be interfolded into this trench. Moreover, 
when it investigates the second wall, the height of the 
wall is above a standard (dl - d2 + da - d4 > 0) in 
Fig.2(d). Therefore, it is impossible to fold up to the 
face after this wall, so this algorithm is stopped. 

II is possible to M o l d  
It i: possible to fold up 
becane dl - d2 < 0. 

(a) The first judgement to (b) The first judgement to 
interfold fold up 

II is -310 to fold up 
b.cundl  - d > + d J - d , > o .  

do I ~ ~ . - ~ ~ + ~ ~ ~ ~ ~  

(c) The second judgement (d) The second judgement 
to interfold to fold up 

(STEP 2) Judgement in the following two cases. 

i) ~f xi=o ak = 2ao and xi=, makdk < 6, it 
is impossible to fold to the face containing 
si. 

ii) ~f ak = ao and ~ f =  makdk > 0, it is 
impossible to fold to the iace after the face 
containing si, =+ stopped. 

(STEP 3) If all line segments are scaned,=+ stopped. 

(STEP 4) i t i + 1. * (STEP 2). 

Some ways of folding with the faces judged "fold- 
able" are constituted and outputted. a series of pro- 
cesses is named origami-section method. 

3.2 Complex Folding Operations 

3.2.1 Tucking in and Covering 

Ln tucking in and covering, there are common char- 
acteristics and antithetical characteristics. They are 
summarized to below. 

Common characteristics 

- Generated creases are symmetrical. 
- Some crease's attributes of the origami sym- 

metrical axis are reversed. 

Differences 

The calculation method is explained using Fig.3. 
The first, the symmetrical crease is generated like a 
basic folding operation. The next, with an acute angle 
in case of tucking in or with an obtuse angle in case of 
covering, the crease is generated, and the attribute of a 
part of the symmetrical axis between generated creases 
is reversed. Crease patterns are called the basic crease 
pattern of tucking in or covering, respectively. 

Figure 2: Examples of finding the possible ways of fold- 
ing 

The specific algorithm is shown below. 

The judgment algorithm of the folding possi- 
bility 

S = (si) : a set of line segments of a section 

di : the length of si 

C = (q) : a set of the creases which cross line seg- 
ments of a section 

(a) Basic crease pat- (b) Basic crease pat- 
ai : the digitized attribute of ci tern of tucking in tern of covering 

1, when the attribute of q is Mountain. Figure 3: Basic crease pattern of complex folding o p  
% = {  -1, when the attributeof ci is Wley. erations 

(STEP 1) i t 1. 



3.2.2 Expanding 

The calculation method of expanding is more compli- 
cated than tucking in and covering. Because the crease 
pattern of expanding is not expressed with only one 
clearly defined pattern. The basic crease pattern is 
shown in Fig.4. However, a origami model cannot be 
flat folded by using only the basic crease pattern con- 
sisting of three creases. Then, the algorithm of de- 
tecting another crease using local flatness conditions is 
proposed. 

The algorithm of detecting a consistent crease 
A crease is detected on the intersection of three 
creases of the basic crease pattern so that a 
origami model becomes flat. 

Attr : the crease's attribute 

Attr = Mmntain or Valley 

(STEP 1) NM and Nv are the number of mountain 
and valley creases, respectively. In the crease pat- 
tern of expanding, 

i) If NM > Nv, Attr = Mountain. 

ii) If NM < Nv, Attr = Valley. 

(STEP 2) It investigates whether the crease whose 
attribute is Attr and is not the crease generated 
by expanding is eliminable. If it is eliminable, Attr 
of the crease updates into "openingn, * stopped. 

(STEP 3) For all angles other than the angle among 
creases generated by expanding, It investigates 
whether the crease whose attribute is Attr can be 
inserted within each angle. If it is ossible to in- 

* stopped. 
t sert, the crease whose attribute is ttr is inserted, 

Figure 4: The basic crease pattern of expanding 

4 Experimental results 

With the help of an unfolded plan, we simulate all 
the ways of folding specified by incomplete crease in- 
formation, and only constitute all the feasible folding 
operations using the methods described above. In this 
section, we present some results when arbitrary crease 
information is provided for the input. 

Figure 5 shows the present state of the origami 
model that consists of two triangle-faces and a new 
crease on them. The creases automatically generated 
on unfolded plans are shown in Fig.6 and the result- 
ing origami models in 3D virtual space in Fig.7. Two 
kinds of basic folding "mountain folding" and "valley 
folding" and two k i d s  of complex folding "tucking in" 
and "covering" are simulated. It can be observed that 

d l  and only the feasible ways of folding are generated 
as expected. For mountain folding and valley folding, 
two ways are constituted while the different portions 
of the faces are used as moved faces. Although the 
two operations are logically equivalent, they should be 
regarded as different operations in origami. Using our 
methods gives the correct results. 

R C a m d  : "Tucljng in' 
Crease wsition 

New ncsce Terminal poinl l 
vatex ID. ( I .  2) 
Inner oart ratio : 0.7)  

I \ ~ernuni  point 2 

Figure 5: Experimental input 

Figure 6: The calculation result on unfolded plans 

Figure 7: The resulting origami models in 3-D virtual 
space 

5 Conclusions 

Our present work has demonstrated that it is pos- 
sible to generate feasible folding operations only based 
on incomplete crease information using proposed meth- 
ods. As one of the future subjects, it is necessary to 
verify the validness of the algorithms under more com- 
plex states of the origami model. 
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