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Abstract 

We present an approach for nonlinear optimization of the 
parameters of an endoscopic camera mounted on a surgery 
robot. The goal is to generate a depth map for each im- 
age in order to enhance the quality of medical light fields. 
The pose information provided by the robot is used as an 
initialization, where especially the orientation is inaccurate. 
Refinement of intrinsic and extrinsic camera parameters is 
performed by minimizing the back-projection error of 3-D 
points that are reconstructed by triangulation from image 
features tracked over an image sequence. 

Optimization of the camera parameters results in an en- 
hancement of rendering quality in two ways: More accurate 
parameters lead to better interpolation as well as to better 
depth maps for approximating the scene geometry. 

1 Introduction 

In order to introduce computer support into minimal- 
invasive surgery, methods from image-based rendering - 
so-called light fields [2, 51 - were used recently for gen- 
erating realistic models of human organs and for substitut- 
ing highlights [lo]. These medical light fields were gener- 
ated using a structure from motion approach [4] to compute 
camera motion and 3-D scene geometry simultaneously. In 
that approach it is necessary to track-feature points over 
many images of the image sequence assuming a rigid scene. 
However, when reconstructing a light field from an endo- 
scopic image sequence, this rigidity constraint usually does 
not hold. The reasons are e. g. respiration and heart beat of 
the patient. This results in either badly calibrated cameras 
and wrong depth information or in no reconstruction at all, 
i. e. no light field. 

When using an endoscopic surgery robot like the AESOP 
3000 from Computer Motion Inc., it is possible to get infor- 
mation on the camera positions directly from the robot with- 
out computing them by structure from motion algorithms. 
But since the endoscope has to be mounted manually and 
the camera's orientation cannot be fixed exactly, the camera 
pose provided by the robot is not accurate. Additional in- 
accuracies are introduced by the robot motions themselves, 
which lead to inconsistent camera poses that result - com- 
pared to structure from motion approaches - in very high 
back-projection errors of triangulated 3-D points. 
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Depth maps for each image can be used for improving 
light field rendering quality considerably. In our approach 
those depth maps are computed using a stereo approach for 
dense disparity maps as described in [7]. The problem that 
arises here is the robot's accuracy, especially considering 
the orientation of the camera which is important for rectifi- 
cation and disparity computation using [7]. That is why we 
apply a nonlinear refinement step using the camera param- 
eters obtained from the robot as an initialization in order to 
improve the depth maps and thus light field quality. 

In the following we are going to describe the methods 
used for optimization and show the resulting depth maps 
before and after optimization. 

2 Computation of 3-D Points 

For nonlinear refinement as described in the next Sec- 
tion, 3-D points and their corresponding image points are 
required. Since the robot provides only its movement but 
no 3-D information about the scene, we have to apply a 
tracking algorithm at the beginning that results in corre- 
spondences between image points over many frames. From 
those correspondences 3-D points can be triangulated. Note 
that we do not use those correspondences for applying a 
structure from motion algorithm, since that information is 
readily available from the robot itself. Here is an overview 
of the 3-D point computation: 

Undo radial lens distortions, which are actually very 
dominant in endoscopic images. The intrinsic camera 
parameters needed for that step were calibrated in a 
previous step using a calibration pattern, since they do 
not change during camera movement. 

Detect and track feature points qij over the image se- 
quence where the camera parameters are to be opti- 
mized. For this purpose we apply the tracking method 
described in [9] with the extension made in [8] for esti- 
mating affine transformations between the feature win- 
dows. In contrast to the computation of camera param- 
eters using the structure from motion approach only, a 
small number of features which could be tracked over 
the frames are sufficient. 

Triangulate 3-D points wj from the corresponding im- 
age points qij using a least squares method. 

3 Nonlinear Refinement 

The camera parameters obtained from the robot can be 
described by a linear mapping using a 3 x 4 projection ma- 



trix. We assume a perspective camera model. A homoge- 
neous 3-D point wj is projected onto a homogeneous 2-D 
point qij in frame i using the following equation: 

where K i  is a 3 x 3 matrix containing the intrinsic pa- 
rameters f,, f y ,  UO, and vo, Ri is a rotation matrix whose 
columns correspond to the axes of the camera coordinate 
system, ti is a translation vector giving the position of the 
camera's optical center, and I3 is the 3 x 3 identity ma- 
trix. The intrinsic parameter matrix Ki as well as lens dis- 
tortions (which are not modeled by (1)) are obtained by a 
calibration step before using the robot. Thus each image is 
already undistorted when the following steps are applied. 

An optimal way (in the sense of Maximum-Likelihood 
estimation) to do nonlinear refinement is optimization of the 
back-projection error of 3-D points in all images, which is 
given by: 

(2) 
where m is the number of frames and n the number of 3-D 
points. The detected image feature points are denoted by 
( z i j r  yi j )y  p$ ( k  = 1,2 ,3)  are the row vectors of the pro- 
jection matrlx Pi .  Minimization of this function usually is 
referred to as bundle-adjustment [3]. 

Minimization of (2) is equivalent to minimizing the 
following expression, which is called interleaved bundle- 
adjustment, which results in a time complexity of O(nm3) 
instead of O(nm3 + n2m2 + n3m) for minimization of (2): 

This is called interleaved because in each optimization step 
of the camera parameters an optimization of all 3-D points 
is performed, which can be done separately for each point. 

For the purpose of nonlinear optimization the Gauss- 
Newton algorithm with Levenberg-Marquardt extension 
(see [3] for details) is utilized which computes a new es- 
timate of a parameter vector a (containing the camera pa- 
rameters) using a local parametrization Aa by = 
ak + Aa where 

This method minimizes the mean square error E ~ E ,  where 
E is a residual function that computes in our case the (non- 
squared) back-projection error between each image feature 
point (xi j ,  y i j )  and the projection of its corresponding 3-D 
point wj: 

J is the Jacobian of E evaluated at a k :  J = ( a k ) .  Since 
the matrix inversion in equation (4) may be numerically in- 
stable due to a nearly singular matrix J ~ J ,  the factor X 
is introduced in the Levenberg-Marquardt algorithm and 

adapted during each iteration. One Levenberg-Marquardt 
iteration comprises the following actions: Computation of a 
parameter update using equation (4) as well as the resulting 
back-projection error, acceptance of the new parameters if 
the error is smaller than the error after the last iteration and 
division of X by a factor of 10, or rejection of the computed 
parameters and multiplication of X by a factor of 10. Since 
the error may increase during one iteration due to instabil- 
ities in matrix inversion, the preceding steps are done until 
the new parameters yield a smaller error than at the end of 
the last iteration. 

For m frames the parameter vector a contains 3m com- 
ponents of the translations ti, 3m components parametriz- 
ing the rotation matrices Ri,  and 4m components for the 
intrinsic parameters. The 3n coordinates of the 3-D points 
are optimized separately in each optimization step when us- 
ing interleaved bundle-adjustment. 

A numerically stable parametrization is used for the ro- 
tations, each of which has 9 elements but only 3 degrees of 
freedom (DOF), i. e. either the axislangle representation or 
quaternions [6]. When using quaternions for nonlinear op- 
timization it is necessary to consider that a quaternion rep- 
resenting a rotation has 4 elements but only 3 DOF, since it 
must be normalized to 1. The Levenberg-Marquardt algo- 
rithm cannot deal with constraints on the parameters and it 
must be guaranteed that the norm of a quaternion is always 
1 during optimization. In order to accomplish this goal we 
used the quaternion approach presented in [6] which gives a 
quaternion parametrization at the operating point using only 
3 parameters. 

Since we use interleaved bundle-adjustment, time com- 
plexity can be reduced further because the Jacobian J is a 
block-diagonal matrix, resulting in a complexity of O(nm). 

4 Experiments 

For our experiments we used image sequences of a sim- 
plified dummy taken by an endoscope mounted on the 
AESOP robot. Figure 1 shows the processing steps of 
one image of a sequence as well as a 3-D plot of triangu- 
lated points and camera poses: In Fig. l(a) one can see a 
part of an endoscopic image obtained directly by the en- 
doscope. Strong radial distortions are still visible in that 
image. The image after correction of those distortions is 
shown in Fig. l(b). This is the image used for detection and 
tracking of feature points, which are plotted in Fig. l(c). 
These features are tracked over a number of frames and 
are used afterwards for triangulating 3-D coordinates. In 
the following we will give results for two sequences, de- 
noted by Dummy and Calib. Dummy is a sequence with- 
out any ground truth information, while Calib contains im- 
ages where a calibration pattern was put into the dummy 
(cf. Fig. 2). The image points used for optimization of the 
Calib scene were extracted by finding the circles of the cal- 
ibration pattern and are therefore extremely accurate. Ta- 
ble 1 shows the results before and after nonlinear optimiza- 
tion for these sequences. Bundle-adjustment minimizes the 
back-projection error, i. e. the root mean square error per 
image point in pixels, which is given in Table 1 and was 
computed by: 

where m is the number of frames, n the number of 3-D 
points, (xij  , y i j )  a detected feature point, and ( z i j ,  6,) the 



- Parameter ) I  Dummy Calib 
No. of iterations 1 1  100 5 1 100 5 
No. of 3-D points 11 1;; 1;; :: 
No. of frames 
Error before opt. 21.4 21.4 17.9 17.9 
Error after opt. 1.63 9.01 1.64 17.1 

Table 1: Data of image sequences used for the experiments. 
Shown are the back-proiection errors for the two sequences 

(a) Part of the original im- (b) Part of the original im- after 5 and after 100'iteiations. 
aee with lens distortions age without lens distor- 

(a) Dummy before opt. (b) Dummy after opt 
(c) Detected feature points 

Figure 1: Part of the original image of a simplified dummy 
taken by an endoscope mounted on AESOP (l(a)), image 
where radial lens distortions have been corrected (1 (b)), and 
features used for tracking and triangulation (l(c)). 

(c) Calrb before opt ( d )  Cal~b after opt. 

Figure 3: Depth maps of images before and after nonlinear 
optimization for the two sequences. 

(a) Calibration pattern in- (b) Detected circles of pat- 
side of dummy tern 

Figure 2: Calibration pattern inside of dummy and extracted 
circles. 

back-projection of a reconstructed 3-D point u r j  into frame 
i. Since the goal of the optimization is computing enhanced 
light fields, we also evaluated the results by computing dis- 
parity maps of rectified image pairs before and after non- 
linear optimization. The maps before optimization shown 
in Fig. 3 on the left-hand side were created using the cam- 
era projection matrices obtained from the robot, the maps 
on the right were computed using the optimized camera pa- 
rameters. The main problem when computing a depth map 
from non-optimized camera matrices is that the rectification 
result is wrong, which means that the left-right correspon- 
dences cannot be established correctly. Rectified images 
before and after optimization are shown in Fig. 4. The non- 
linear optimization step however results in consistent cam- 
era movements and orientations. 3-D plots of scene points 
and camera poses before and after nonlinear optimization 
using 100 iterations are shown in Fig. 5 for the Dummy 
sequence. As can be seen in Table 1, the back-projection 
error before optimization is very high, which is a hint that 
the camera parameters obtained from the robot are not very 
consistent and thus not accurate, since the 3-D points were 
triangulated using the robot data. If that data were con- 
sistent, the triangulation would result in much better fitting 

3-D points. During optimization the back-projection error 
decreases considerably, however. 

Figure 6 shows light fields generated using the Dummy 
sequence with depth information before (6(a)) and after 
(6(b)) nonlinear optimization. 

5 Conclusion 

In this paper we presented an approach for nonlinear 
optimization of the parameters of an endoscopic camera 
mounted on a surgery robot. The goal was to generate a 
depth map for each image in order to enhance the quality 
of medical light fields. We showed how to use the robot's 
pose information as an initialization for interleaved bundle- 
adjustment by detection and tracking of point features giv- 
ing 2-D correspondences that were used for triangulation of 
3-D scene points. After minimization of the back-projection 
error we obtained camera parameters that are more accurate 
and consistent. This is especially important for computa- 
tion of depth maps using a real-time stereo approach that 
exploits information about the cameras for rectifying image 
pairs. Inaccurate camera parameters would result in bad 
depth maps and thus low-quality light fields. 

Although the back-projection error is decreased by our 
technique, the resulting depth maps do not always look bet- 
ter than before the optimization. Sometimes they look quite 
the same as the original ones, extremely seldom they look 



(a) Left image of Dumnty (b) Right image of Dummy Figure 6: Light field of Dummy sequence with depth infor- 
before opt. before opt. mation before (a) and after (b) nonlinear optimization. 
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(a) Dunrmy before opt. (b) Dummy after opt. 

Figure 5: 3-D points and camera poses (shown as pyra- 
mids)) before and after nonlinear optimization (100 itera- 
tions) for the Dummy sequence. 

worse. 
Certainly there exist many ways to improveour approach 

further, e. g. by detection and removal of outliers during 
tracking image feature points using RANSAC [l]. The fun- 
damental matrices that could be used for RANSAC may be 
computed from the robot projection matrices Pi before op- 
timization. Another idea would be to optimize only a subset 
of the camera parameters, e. g. only the 6 pose parameters 
or the rotation, since rotation is especially important for the 
rectification step. 
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