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Abstract 

The present paper reports an image correction 
method that  is based on iterative projection onto 
eigenspaces. The fundamental method proposed in 
Shakunaga and Sakaue[ll] and involves iterative anal- 
ysis of relative residual and projection. The present 
paper refines the projection method by solving linear 
equations while taking noise ratio into account. The 
refinement improves both the efficiency and robust- 
ness of the projection. Experimental results indicate 
that  the proposed method works well for various kinds 
of noise, including shadows, reflections and occlusions. 
The  proposed method can be applied t o  a wide variety 
of computer vision problems, which include objectiface 
recognition and image-based rendering. 

1 Introduction 

In objectiface recognition, eigenspaces are used with 
various kinds of discrimination criteria [I ,  2, 3, 4, 6, 
8, 9, 10, 12, 13, 141. Eigenspaces are also effective 
for image based rendering with varying lighting condi- 
tions [7, 51. While eigenspaces are usually constructed 
by PCA, eigenspaces can also be constructed from 
original images based on the photometric SVD algo- 
rithm [Is]. However, the eigenspace should be carefully 
constructed if the original images include noises such 
as shadows, reflections or occlusions. For this prob- 
lem, we have proposed a RANSAC approach [5] to  a 
3-d eigenspace construction for Lambertian objects in 
order to  realize photometric image-based rendering. 

In objectlface recognition, however, we encounter 
another problem. Tha t  is, eigenspace-based methods 
always assume that a projection is made correctly from 
a given image. When projections are made from im- 
ages containing a lot of noise, the projections are often 
suffer from effects of the noise. In order to  solve this 
problem, Shakunaga and Sakaue[ll] proposed an image 
correction method based on the iterative projection of 
images onto eigenspaces, in which noise detection us- 
ing the relative residual is essential. The present paper 
refines the method in both efficiency and robustness. 

Notations and Basic Relations 

2.1 Normalized Image Space (NIS) 

x of an original image X is defined as x = x / l T x .  
After normalization, x is normalized in the sense that  
l T x  = 1. The NIS is closed to  any averaging operation. 

2.2 Projection and Residual in NIS 

Let x* denote a projection of n-dimensional vector 
x t o  an m-dimensional eigenspace. That  is, 

where @, consists of m(m < n)  orthogonal bases of the 
eigenspace, and F denotes a center of the eigenspace. 
Let xu denote a residual of the projection, 

2.3 Effect of Noise on Projection/Residual 

When an image X is a weighed sum of a signal image 
X s  and a noise image X N ,  the image X is normalized 
to  

X = (1  - O)XS + OXN (3) 

where x~ = xN/lTxN1 XS = xS/lTxs and a is a 
value called the noise ratio, which is denoted by 

= l T x N / l T x .  (4) 

Then, x* and XI are given as 

x* = (1 - a ) x i  + ax;v (5) 

xfl = a ( x N  - F) - a@,,,@;(xN - F). (6) 

As shown in Eq. (5), the projection is simply a weighed 
sum of the projections of signal and noise. On the 
other hand, the right-hand side of Eq. (6) contains two 
different terms. The first term indicates the location 
of a noise and the second term shows that  the noise 
affects the entire image by the weight -a@,@;. If 
the noise is regarded as white noise, the noise affects 
the image very little. On the other hand, in the case 
of spike noise, for example, the noise is spread over the 
image by the weight -a@,@:. 

3 Noise Region Detection/Correction 

3.1 Relative Residual 
The Normalized Image Space (NIS) was proposed 

by Shakunaga and Shigenari[lO]. Let X denote an n- Let e, denote a unit vector of which the j-th element 

dimensional image, and 1 denote an n-dimensional vec- is 1 and all others are 0. Then, the relative residual r 

tor of which any element is 1. The normalized image is defined by x* and xu as 
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We use the relative residual rather than the absolute 4 Optimization of Linear Projection 
residual (xu) for noise detection because noise should 
be suppressed in the relative scale, not in the absolute 4.1 Simple Iterative Projection 
scale. For example, small noise in a dark area should be 
suppressed even if the relative residual is of sufficient 
size. 

3.2 Noise Detection by Relative Residual 

When the amount of noise is relative small compared 
to the signal, the distribution of the relative residual 
can be regarded as a zero-mean Gaussian distribu- 
tion. Therefore, noise detection is basically achieved 
by thresholding IeTrl. 

On the other hand, the mean of the distribution 
may shift when the amount of noise increases. In order 
t o  compensate the mean shift, let us define a noise 
indicator pj ( r )  as 

Using the noise indicator p j ,  we can correct a projec- 
tion of x t o  the eigenspace by iterative projections. The 
procedure proposed in Shakunaga-Sakaue[ll] is sum- 
marized as follows: 

Let xi denote the i-th correction of x ,  where xo is 
equivalent to  x. Define the i-th projection, residual 
and relative residual as 

Let us also define two diagonal matrices Ni and Ni as 

- 
i f  leTr-77.1>re 

1 ( 8 )  
N i  = I -  N i  (13)  

otherwise 
where I is a unit matrix. Then, xi+l = x i + l / l T X i + l  
is given by 

where re is a threshold and i is the median of eTr .  In 
Eq. ( 8 ) ,  the term pj(r)  indicates where a considerable - 

Xi+i  = Nix i  + Ni(%+ @,x: ) .  (14 )  
amount of noise is involved. 

3.3 Competitive Detection of Noise Re- 
gion 

In general cases, the median may not be far from the 
mean. When multiple noise sources are included in the 
scene, multiple peaks may be generated and the median 
of the relative residual varies greatly from the mean. 
Furthermore, when several different signals are mixed 
in the scene, one signal works as noise in the other sig- 
nals, and the distribution of the relative residual results 
in a multimodal distribution. In order to  handle cases 
having a multimodal distribution, the noise detection 
method mentioned in 3.2 should be generalized. 

Let f k ( k  = 1 , 2 , .  . .) denote multiple peaks in the 
distribution of the relative residual. If concurrent pro- 
cesses are allowed for further processings, this problem 
is solved by replacing i with in Eq. (8) i k .  In the 
hypothesis-and-test framework, concurrent processes 
will survive until a final determination is made, which 
selects one or more valid interpretations from among 
all possible interpretations. 

Although the concurrent processings may cover a 
wider class of noise detection/correction, since the fo- 
cus of the present paper is not concurrent processing, 
we continue our discussion by considering herein after 
only the single peak case. 

In each correction, a pixel in a noise region is 
replaced with the corresponding pixel in the back- 
projection image (% + @ , x f ) .  Because a change in 
xi affects N i ,  we should minimize the noise effects by 
iterative projections. Finally, we obtain x s  as 

xs = lim x i .  
i-03 

(15 )  

4.2 Optimal Projection by Linear Equa- 
tions 

The simple iterative projection provides a robust 
and effective projection. However, iterative projection 
often requires several iterations until convergence. In 
order to  improve the efficiency, let us modify Eqs. (9) 
and (14)  while taking the noise ratio cri into account. 
Assume K x n  % 0 and K x s  % N i x i ,  and let cri de- 
note the value of cr for x i .  The following relation is 
then derived from Eq. ( 3 ) :  

Since K x d  = K @ , x f  + KT, Eq. (16)  gives 

Since Eq. (17)  gives us simultaneous linear equations 
3.4 Image Correction by Projection of unknown xi" and 1 / ( 1  - a;), we can easily estimate 

xf and CY, simultaneously. Thus, xi+l = x i + l / l T x i + l  
is given by 

When leTr - 77.1 > re,  the j-th pixel of x  is replaced - 
by e ; ( ~  + @ , x * ) .  The image correction causes an Xi+l = N i x o / ( l  - C Y ~ )  + Ni(F + @ m ~ f )  (18 )  
intensity value t o  be consistent with the projection. 
For example, the image correction causes intensities in and the iterative projection problem is reduced to  an 
shadow regions to  become lighter, and intensities in iterative solution of linear equations in Eq. ( 1 7 ) ,  and 
reflection regions to  become darker. X i + l  can be updated by Eq. (18) .  



4.3 Comparison 

Although both the simple iterative projection and 
the iterative projection by linear equations provide 
the correct projection when noise is small, the latter 
method is much more efficient and slightly more robust 
when great deal of noise is included in the original im- 
age. The efficiency of the simple iterative projection 
depends on the amount of noise in the image, because 
each improvement is small. On the other hand, we can 
obtain the best possible solution by solving the linear 
equations. This difference results in the difference in 
efficiency. 

5 Experimental Results 

5.1 Eigenplane for Lambertian Object 

( i i )  (1i.i) (iv) 
Figure 3: Seauence of ~roiect ion images and noise indi- 

<, . " - 
caters. From an original image, (i), both the projection 
(in the upper row) and the noise indicator (in the lower 
;ow) are-gradually improved from (ii) to  (iv). 

In NISI a 2-d eigenspace can be constructed for a 
Lambertian object. An example is shown in Fig. 1, 
which is constructed in NIS from eight images of a 
statue of Napoleon. In Fig. 1, the leftmost image is 
the average image, and the other images are two or- 
thonormal bases of the eigenplane (2-d eigenspace). 

Figure 4: Change in the histogram of relative residual. 

Figure 1: ll:igc,nplane for a Lamhertian object. 

Three examples of image correction are shown in 
Fig. 2. In the top and middle examples, the corrections 
are made around the nose. Shadow regions are detected 
and corrected by the proposed method. The bottom 
example is a case containing a great deal of noise. In 
the input image, a quarter of image region is covered 
by a black mask. In this case, we are finally able to  
obtain the correct signal image. 

Figure 2: Image correction of a Lambertian object. 
Each row, from left to  right, shows the original image, 
the detected noise and the final result are shown. 

Figure 3 indicates how the iterative noise detec- 
tion/correction works for the bottom example in Fig. 2. 
The change in distribution of the relative residual is 
shown in Fig. 4, where (i)-(iv) correspond to  the num- 
bers in Fig. 3. Two peaks are found in histograms (i)- 
(iv) in Fig. 4. In each histogram, the left-hand peak 
is caused by the mask region in the original image, 
and right-hand peak is caused by the signal. The first 
histogram is widely distributed around the right-hand 
peak. This results in incorrect detection of the noise re- 
gion, as shown in Fig. 3 (ii). As the histogram becomes 

sharp around the right-hand peak and converges, the 
noise region also becomes less noisy, as shown in Figs. 3 
(iii) and (iv). 

5.2 Individual 3-d Eigenface 

The proposed method also works well for a non- 
Lambertian surface. An example eigenface, shown in 
Fig. 5, which is constructed from six individual facial 
images that include a little noise. Three examples of 
image correction are shown in Fig. 6. In the top row, 
the correction is performed around the nose, where the 
shadow region is detected and corrected. In the middle 
row, correction is made for the specular reflections in 
his glasses. In the bottom example, correction is made 
for an artificial noise. These examples demonstrate 
that the proposed method is robust to  various kinds of 
noise, including shadows, reflections and occlusions. 

5.3 Canonical 45-d Eigenface 

For the class of human face, projection-based image 
correction still works. In this experiment, a 45-d eigen- 
face is constructed from 50 faces, each under 20 light- 
ing conditions. Figure 7 shows the eigenface, where 
the leftmost image is the average image and the other 
images are the most significant three bases. 

Three examples of image correction are shown in 
Fig. 8. The target person is not included in the image 
set which is used for the eigenface construction. For 
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Figure 6: Noisc, cletection/correct iorl based on projec- 
tion onto a 3-d eigenface 

Figure 7: Eigenface constructed from several persons. 

Figure 8: Noise detect~ion/correction based on projec- 
tion onto a 45-d eigenface 

the comparison, all of the input images are the same 
images, in the same order, as those shown in Fig. 6. 
Experimental results in Fig. 8 show that the proposed 
method works well, while the result images are a lit- 
tle less similar to the inputs than the result in Fig. 6 
because of the difference of eigenspaces. independent 
of the dimension of the eigenface. We have confirmed 
that the result images shown in Fig. 8 are a consid- 
erable improvement over those yielded by the decorn- 
posed eigenface method[lO] . 
6 ConcIusions 

A projection-based image correction is discussed for 
a given eigenspace in NIS, and an efficient and ro- 
bust implementation is provided by linear equations, as 
shown in Eq. (17). The improved algorithm is greatly 
improved in both efficiency and robustness compared 
to our previous implementation based on the simple it- 
erative projection. Experimental results demonstrate 
that the projection-based image correction is very ef- 
fective for a variety of eigenspaces, independent of the 
dimension of the eigenspace. The proposed method can 
be applied to a wide variety of computer vision tech- 
niques, including object/face recognition, tracking and 
computer graphics. 
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