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Abstract 

In the field of computer vision, beneficial methods 
of measuring surface shape of transparent objects such 
as glasses have rarely been proposed. In this paper, we 
propose a convenient and inexpensive method for mea- 
suring the surface shape of transparent objects. The 
degree of polarization of the light reflected from the 
object surface depends on the reflection angle which, 
in turn, depends on the object's surface normal; thus, 
by measuring the degree of polarization, we are able to 
calculate the surface normal of the object. But unfortu- 
nately, the relationship between degree of polarization 
and surface normal is not 1 to 1; thus, to obtain the true 
surface normal, we have to resolve this ambiguity prob- 
lem. In this paper, we explain the method of resolv- 
ing the ambiguity by using the differential-geometrical 
property of the object surface. 

1 Introduction 

In the field of computer vision, many methods which 
determine the surface shape of objects by vision sys- 
tems have been developed[l, 8, 141. Those methods 
mainly focus on opaque objects and do not focus on 
specular objects. Recently, researchers have enhanced 
these methods to measure the surface shape of specular 
objects. The stereo method has been extended to mea- 
sure specular objects by Bhat[2] and Oren[l8]. Pho- 
tometric stereo, shape-from-shading and color photo- 
metric stereo have been improved to measure specular 
objects by Ikeuchi[9], Nayar[l7], Hata[6] and Sato[22]. 

Zongker[27] and Chuang[5] have developed a 
method to synthesize a realistic image of transparent 
object without using any information about the 3D 
shape of the object. Schechner[23] and Szeliski[24] have 
separated the overlapped image of glass plates into two 
images; one is the reflected image, while the other is 
the transmitted image. Murase[l6] have proposed a 
method to determine the surface shape of water wave 
by analyzing the image placed in the bottom of the 
water, which causes the image to be deformed due to 
refraction and undulation. Hata[7] have projected a 
light stripe onto transparent objects and recovered the 
surface shape of transparent objects by using a genetic 
algorithm. 

Polarization has proven to be effective to estimate 
the shape of specular objects such as metals or trans- 
parent objects. Koshikawa[l2, 131 analyzed the polar- 
ization of specular objects by illuminating the objects 
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with a circular polarized light to pick up, from the 
database, a 3D model of an object which matches the 
observed object. Wolfl25, 261 constrained the surface 
normal of the objects by analyzing the polarization of 
objects illuminated by unpolarized light. He also at- 
tempted to determine the surface shape of objects by 
using a combined method of polarization analysis and 
binocular stereo; however, he did not propose a method 
to search the corresponding points of two images; thus, 
he measured only the orientation of the glass plane and 
the metal plane. Saito[20, 211 tried to measure the sur- 
face shape of transparent objects; however, there was 
an ambiguity problem for determining the true surface 
normal, and she simply heuristically solved the ambi- 
guity. 

Miyazaki[l5] extended Saito's method and solved 
the ambiguity problem from a polarization analysis of 
thermal radiation, and determined the surface shape of 
transparent objects. Rahmann[l9] indicated that one 
can solve the corresponding problem in Wolff's method 
by the combined method of polarization analysis and 
trinocular stereo. However, this matching method is 
not a practical one, so he actually computed the surface 
shape of specular objects by the optimization method. 
He measured the surface shape of an opaque specu- 
lar sphere by using polarization images taken from 5 
directions. 

In this paper, we propose a method to determine 
the surface shape of transparent objects by an eas- 
ier way than those of Rahmann, Miyazaki and Hata. 
We solve the ambiguity problem of surface normal in 
Saito's method by rotating the object at a small an- 
gle. We solve the corresponding problem of binocu- 
lar stereo in Wolff's method by using the geometrical 
property of the object surface. We do not need an 
extra infrared camera such as that used in Miyazaki's 
method. We do not require camera calibration, so we 
do not need to know the position of a projector as in 
Hata's method, and we do not need to know the ro- 
tation angle for stereo as in Rahmann's method. We 
use parabolic curves, where Gaussian curvature is 0, 
for searching the corresponding points[4, 81. Parabolic 
curves are very important geometrical characteristics, 
and many well known researchers have investigated the 
application of this curve such as Klein, who invented 
the Klein bottle, and Koenderink[ll]. 

We will describe the assumptions we require for our 
method in Section 2. 

We will explain about the polarization analysis in 
Section 3. We will describe the ambiguity problem of 
surface normal: the relationship between the degree 
of polarization and the reflection angle is not one-to- 
one, and one cannot determine the true surface normal 



unless one solves this ambiguity problem. 
We solve the ambigutiy problem by our proposed 

method described in Section 4. We will indicate the 
disambiguation method by introducing a binocular 
stereo method. Instead of setting two cameras, we ro- 
tate the object at a small angle. We compare two po- 
larization images taken from two different directions: 
one polarization image is taken before the object is ro- 
tated and the other polarization image is taken after 
the object is rotated a t  a small angle. The degree of 
polarization must be compared a t  a couple of points 
which correspond to identical points on the object sur- 
face. We explain the corresponding method by ana- 
lyzing the geometrical property on the object surface, 
which is invariant to the rotation of the object. 

We present an experimental result in section 5, and 
suggest topics for our future work in Section 6. 

2 Assumption 

We assume an orthographic projection to the image 
plane of the camera. Target objects should comply 
with the following assumptions: 

1. Object is transparent and solid 
2. Refractive index is known 
3. Surface is optically smooth (not rough) 
4. Surface is geometrically smooth (C2 surface) 
5. Object is closed 
6. No self-occlusion exists 
7. Disambiguation method of azimuth angle 4 

shown in Section 3 can be applied 
8. Object still obeys the above conditions even if we 

rotate the object at a small angle 
From the seventh condition, several kinds of con- 

cave objects cannot be modeled automatically by our 
method. 

The first condition is not necessary. Our method 
is also effective for opaque objects. The method can 
be applied only to perfect diffuse surfaces or to per- 
fect specular surfaces; however, if we can separate the 
diffuse component and the specular component of the 
objects, we can apply our method to any objects. 

In addition to above assumptions, our method as- 
sumes that there are no interreflections and the rota- 
tion angle of the object is infinitesimal. However, in- 
terreflections actually occur, and the interference of in- 
terreflections can be changed by rotating the object at 
a large angle. If the rotation angle is too small, the dif- 
ference of obtained data will be small, and computing 
the shape will be difficult. Actually, there are more in- 
terreflections in transparent objects than in opaque ob- 
jects. Now, according to our way of thinking, a method 
which can measure the shape of transparent objects 
is robustly applicable to any other objects. Thus, to 
prove the robustness of our method, we applied our 
method to transparent objects. 

3 DOP and reflection angle 

In this section, we describe the relationship between 
the degree of polarization (DOP) and the reflection an- 
gle. Details are described in [3, 15, 20, 21, 25, 261. 

Geometrical location of the acquisition system is 
shown in Figure 1. We locate the camera over the 
target object, and locate the polarizer in front of the 
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Figure 1: Location of acquisition system 

camera. We illuminate the object with unpolarized 
light traveling through the air where the refractive in- 
dex is 1.0. Unpolarized light will become partially po- 
larized light if the light reflects from the object surface 
where the refractive index is n. We observe such re- 
flected light. The angle between the light source di- 
rection and the surface normal is called the incident 
angle, and the angle between the surface normal and 
the camera direction is called the reflection angle. The 
incident angle is equal to the reflection angle for opti- 
cally smooth transparent objects. The plane consisting 
of the surface normal and the camera direction is called 
the reflection plane. Consider projecting the reflection 
plane onto the image plane: the reflection plane a p  
pears to be a straight line on the image plane, and the 
orientation of this line is called a phase angle. 

Surface normal can be represented by zenith angle 
8 and azimuth angle 4. Reflection angle (= incident 
angle) corresponds to zenith angle, and phase angle 
corresponds to azimuth angle. Two phase angles are 
calculated in the range of 0 5 4 < 360°, and the dif- 
ference of those two angles is 180'. Since we know the 
surface normal is heading vertically to the viewing di- 
rection a t  the occluding boundary, we can solve the 
ambiguity problem of the phase angle by propagating 
the determined phase angle from the occluding bound- 
ary to the inner part of the object region. Therefore, 
we have only to determine the reflection angle in order 
to obtain the surface normal of the object surface. 

We rotate the polarizer and observe the object by 
the camera and calculate the DOP. DOP of reflected 
light ranges from 0 to 1: DOP is 0 for unpolarized 
light, and DOP is 1 for perfectly polarized light. The 
following formula represents the relationship between 
DOP and the reflection angle [15, 20, 211. 

DOP p is a function of refractive index n and reflection 
angle 8. We assume that the refractive index is given. 
We can compute the reflection angle from the DOP. 

Figure 2 represents equation (1). The vertical axis 
represents the DOP, and the horizontal axis represents 
the reflection angle. If the reflection angle is 0' or 90°, 
then the DOP will be 0; and if the reflection angle is 



Figure 2: Relation between DOP and reflection angle 

Figure 3: Photo of bell-shaped acrylic object 

Brewster angle, B E ,  then the DOP will be 1. We ob- 
tain two reflection angles from one DOP, except for the 
Brewster angle. One of the angles is the true reflection 
angle and the other is not. We have to solve this am- 
biguity problem to determine the true surface normal, 
and we describe the disambiguation method in Section 
4. 

4 Disambiguation 

4.1 Brewster segmentation 

We obtain the DOP values of whole points over the 
object surface, and we call those obtained DOP values 
the DOP image. Obtained DOP image of the object 
shown in figure 3 is shown in figure 4(a). Figure 3 is a 
photo of a bell-shaped transparent object. The DOP is 
represented as a gray image in figure 4(a), where white 
represents 0 DOP and black represents 1 DOP. 

We divide the DOP image into some regions whose 
boundaries will be the points of Brewster angle, 
namely, the points where the DOP is 1. We call 
the closed curve which consists of only Brewster an- 
gle the Brewster curve. We call this region segmen- 

Figure 4: (a) DOP image and (b) result of Brewster 
segmentation, of bell-shaped acrylic object 
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Figure 5: Gaussian mapping and regions 

tation Brewster segmentation. We disambiguate each 
region after the Brewster segmentation. Since we as- 
sume the object to be a closed smooth object, we can 
disambiguate whole points in a certain region if we dis- 
ambiguate only one point in the region. 

Figure 4(b) is the result of Brewster segmentation 
computed from the DOP image of figure 4(a). There 
are two Brewster curves and one occluding boundary 
in figure 4(b). 

We classify each region into 3 types (figure 5): 
1. B-E region 
2. B-N region 
3. B-B region 

B is for Brewster, N is for North Pole, and E is for 
Equator. There is one B-E region, B-N region, B-B 
region each in figure 4(b). 

We define the B-E region as a region that includes 
an occluding boundary. Consider a Gaussian sphere 
(unit sphere) where the north pole is directed toward 
the camera, and correspond the points of the B-E re- 
gion onto this sphere by Gaussian mapping. The oc- 
cluding boundary will be mapped onto the equator of 
the Gaussian sphere. Points on the equator will satisfy 
0 = 90'. We can disambiguate the points of B-E region 
as Og < 0 5 90'. Occluding boundary is calculated by 
background subtraction. 

We define B-N region as a region including a point 
where 0 = 0'. Points where B = 0' will be mapped onto 
the north pole of Gaussian sphere. We assume that 
there is no self-occlusion even if we rotate the object 
at a small angle: if there is a point where p = 0 in the 
region, and still there is a point where p = 0 in the 
region even if we rotate the object at a small angle, 
we know that such point is not B = 90' but 0 = 0'. 
Thus, we can disambiguate the points of B-N region as 
O O < f ? < B ~ .  

Disambiguation of the points of B-B region is more 
difficult than that of B-E region and B-N region. We 
will explain the disambiguation method of B-B region 
in the following sections. 

4.2 Folding curve 

Now, we rotate the object against the camera at a 
small angle (figure 6). We solve the ambiguity problem 
by comparing DOP images taken both before and after 
rotation. 



Before rotation After rotation 

Figure 6: Rotate the object a t  a small angle 

Figure 7: Gaussian mapping of bell-shaped surface 

Two DOP values must be compared at  an identical 
point on the object surface. We have to search for two 
points, one point in each DOP images where geomet- 
rical properties of the object surface coincide. 

Figure 5 represents the Gaussian mapping of regions 
from object surface to the Gaussian sphere. The north 
pole of the Gaussian sphere represents the camera po- 
sition, as we have suggested previously. B-B region 
on the object surface is enclosed only by the Brewster 
curve, and does not include the points where 0 = 0' or 
0 = 90'; thus, B-B region on the Gaussian sphere does 
not include the north pole or the equator. Since the 
object surface is smooth, a closed region on the object 
surface maps onto a closed region even on Gaussian 
sphere. Thus, B-B region on Gaussian sphere is always 
enclosed by a Brewster curve and additional curves. 
We define such a curve, which is not a Brewster curve, 
as a folding curve or a global folding curve. 

Consider the Gaussian mapping shown in figure 7 
to discuss the characteristics of the folding curve. The 
figure represents the Gaussian mapping of a part of a 
bell-shaped surface. The dotted curve on the surface 
described in the figure corresponds to a curve on the 
Gaussian sphere described in the figure, and this curve 
will be a folding curve. Note that the points of the 
surface map only onto one side of the folding curve. 

Consider mapping a local part of a surface onto a 
Gaussian sphere; if points of the surface map only onto 
one side of a curve on the Gaussian sphere and do not 
map onto the other side of such curve, we define such 
curve as a folding curve o r  a local folding curve. 

Theorem 1 A folding curve is a parabolic curve (= a 
curve whose Gaussian curvature is 0). 

(Pro4 This proof is explained with figure 8. Figure 
8(a) represents an object surface, and figure 8(b) r e p  
resents a Gaussian sphere that corresponds to figure 
8(a). Vertical curves depicted in these figures repre- 
sent folding curves. We locate p and r on the folding 
curve of the object surface. We also locate s on one 
side of the folding curve, and q on the other side of the 
folding curve. p, q, r and s are located separately and 
do not overlap on another. We denote the points on 
the Gaussian sphere as, p', q', r', s', which correspond 

Folding curve Fo,&gm;/$p -w 
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Figure 8: (a) Folding curve and 4 points on object 
surface, (b) folding curve and 4 points on Gaussian 
sphere mapped from (a) 

to the points on the object surface, p, q,  r ,  s. p' and 
r' will be located on the folding curve of the Gaussian 
sphere. From the definition of a local folding curve, q' 
and s' map onto the same side of a folding curve. 

The area of triangle prq, psr ,  and p'r'q' will become 
positive; however, the area of triangle p's'r' becomes 
negative. Gaussian curvature K of p can be calculated 
from the limit taken by approaching q, r and s to p. 

Ap'r'q' 
K = lim - 

r,q+p Aprq 20 

Ap's' r' 
K = lim - 

s ,r+p Apsr 5 0  

As a result, Gaussian curvature K at  p will be 0. 
Even if the location of p' and r' is the opposite loca- 

tion to that shown in figure 8(b), namely, even if p' is 
located to the left and r' is located to the right, we can 
also give a proof that is the same as this proof. Even 
if p or r is not a curve but a surface, we can also give 
a proof similar to this proof. In the case of p' = r', 
p' = q', p' = s t ,  r' = q', r' = s' or q' = st ,  we can give 
a proof more easily than this proof. 0 

From the above arguments, we conclude that the 
folding curve is a geometrical characteristic invariant 
to object rotation. 

Consider a great circle which represents the rotation 
direction. We call this great circle the rotation circle. 
The rotation circle includes the two poles. Points that 
correspond to the rotation circle still correspond to the 
rotation circle after the object rotation. Surface nor- 
mal of the points on the rotation circle is parallel to the 
rotation direction. We define the intersection of the ro- 
tation circle and the global folding curve of B-B region 
as the corresponding point. From figure 9, we realize 
that the corresponding point is a point which has min- 
imum DOP within the points in B-B region where the 
surface normal is parallel to the rotation direction. We 
can prove such nature of the corresponding point from 
the definition of rotation circle, global folding curve, 
and from the unimodality of function (1); however, we 
will not describe the proof. We first execute Brewster 
segmentation to the obtained two DOP images, and 
then we search for one corresponding point in each B- 
B region. 

Figure 10 represents the Gaussian mapping of a sur- 
face resembling a children's slide. The dotted curve on 
the surface shown in the figure maps onto only one 
point on the Gaussian sphere; this point is a folding 
point. Since more than one point of the surface map 
onto one point on the Gaussian sphere, it is very diffi- 
cult to correspond one point to one point on the sur- 
face. However, this is not an important matter, since 



Figure 9: Corresponding point 

Figure 10: Gaussian mapping of slide-shaped surface 

we need only the value of the DOP at the corresponding 
point: points that map onto one point on the Gaussian 
sphere have the same DOP. Note that most other re- 
searchers use the notation "corresponding point" as the 
point on an object surface; however, we define the "cor- 
responding point" as a point on the Gaussian sphere 
rather than on the object surface. 

4.3 Difference of DOP 

Now, we denote the DOP of the object before rota- 
tion as p(6'), and denote the DOP of the object rotated 
at a small angle A0 as p(6' + AB). Then, the difference 
of the DOP at a couple of corresponding points will be 
as follows. 

The graph of DOP p is shown in figure l l ( a ) ,  and the 
graph of the derivative of DOP p' is shown in figure 
l l (b ) .  

The derivative of the DOP is positive when 0' < 
6' < BE, and negative when < 6' < 90°. We as- 
sume that the rotation direction is given, namely, the 
sign of A0 is given. The sign of the difference of the 
DOP at corresponding points can be calculated from 
obtained DOP images. Thus, from equation (4), we 
can determine whether the points of the region satisfy 
0' < 6' < 1 9 ~  or BE < 6' < 90'; namely, we can solve 
the ambiguity problem. Note that there is no ambigu- 
ity problem for a point where 6' = BE, and there is no 
point where 6' = 0' in B-B region. 

Our proposed method uses only the sign for disam- 
biguation, not the value. Thus the method is robust, 

Figure 11: Derivative of DOP 

Figure 12: Obtained shape: (a) shading image, (b) 
raytracing image 

and we do not need to know the rotation angle, which 
is an absolute value of A6'. Since we do not need to 
know the rotation angle, we do not need camera cali- 
bration. Even if there was an error in DOP value or 
even if the rotation angle was not so small, the sign 
of DOP would rarely change. The method is robust; 
thus, even if we do not give a precise rotation direction, 
there is no difficulty for disambiguation. 

5 Result 

We employed the same acquisition system as [15,20, 
211. We obtained DOP images of the object surface by 
this acquisition system, computed the surface normal 
of object surface, and finally integrated the surface nor- 
mal data to the height data by using relaxation method 
[a, 101. 

We applied our method to the object shown in fig- 
ure 3, and the result is shown in figure 12. The target 
object was a bell-shaped acrylic object where the re- 
fractive index is 1.5 and the diameter(width) is 24mm. 
We computed the whole surface shape of the object by 
our method. The rendered images are shown in figure 
12: figure 12(a) is an example of shading image, figure 
12(b) is an example of raytracing result. 

Figure 13 represents the shape of the object ob- 
served from the side view. The obtained shape is r e p  
resented as dotted curve, and the true shape is repre- 
sented as solid curve. Note that we artificially created 
the true shape by hand from the silhouette of the photo 
taken from the side of the target object. According to 
the figure, the height error was calculated to be a p  
proximately 0.4mm. 



Figure 13: Obtained height and true height 

6 Future work 

We are now developing a method which works more 
precisely than this method. Error is mainly caused by 
interreflection of transparent objects. We have to con- 
sider the influence of not only the top surface (= visible 
surface) of the object but also the bottom surface (= 
occluded surface) of the object. 

We should also improve the method for determining 
the phase angle. If such a method is developed, we 
will be able to measure any concave objects. However, 
concave objects cause strong interreflections; thus, we 
have to develop a method which can deal with the in- 
terreflections. 

Consequently, our future work is to develop a 
method which can handle the influence of interreflec- 
tion. 
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