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Abstract 

In this paper, we present work from our on- 
going project on vision-guided retrieval and 
insertion of ORUs. Guidance is to be provided 
through estimated relative poses between an ORU 
(to be retrievedinserted), a robotic arm and the 
related worksite. The major challenges of this work 
include objects with highly reflective or mirror 
surfaces moving with cluttered background, along 
with unreliable or unavailable camera calibration. 
Moving edge detection and model-based feature 
matching and tracking are proposed to deal with 
those challenges. The relationship between image 
and model features is used to estimate projective 
matrices, which are then used to predict feature 
locations in later images. The effectiveness of the 
proposed techniques is illustrated by encouraging 
results. 

1 Introduction 

The International Space Station (ISS), currently 
advancing through various stages of assembly, has 
been designed to be operational for up to 30 years. 
It is expected that maintenance of equipment, such 
as orbital replaceable units (ORUs), will be a major 
task, in addition to space scientific research, to be 
performed on ISS in the foreseeable future. In order 
to more effectively utilize scarce resources provided 
by astronauts and to minimize potential dangers to 
which they are exposed, it is desirable to off-load 
routine maintenance jobs to intelligent space robots 
with supervision from astronauts. In this paper, we 
present work from our on-going project on vision- 
guided retrieval and insertion of ORUs. ORU 
insertion and retrieval is currently being carried out 
by trained operators [I]. However, lack of favorable 
views, due to constraints in camera placement on 
ISS, cause operations to be tedious and time 
consuming. The main objective of our work is to 
develop a machine vision based method to provide 
guidance either to operators or directly to 
manipulators. Guidance is to be provided through 
estimated relative poses between an ORU (to be 
retrievedinserted), a robotic arm and the related 
worksite. The major challenges of this work 
include (1) the cluttered background against which 
insertion and retrieval of ORUs are performed; (2) 
the complicated ORU structure coupling with highly 
reflective (or even mirror) surfaces (as shown in 
Figure 1); (3) all existing ORUs, installed or yet to 

be installed, have been designed to make them tele- 
operation friendly, and is impossible or highly 
unlikely to be modified to be favorable to machine 
vision, so is the configuration of cameras (and pan- 
tilt units); and (4) camera parameters (e.g. focal 
lengths) may be changed through non-calibrated 
zooming mechanisms and accurate calibration may 
not be maintained. 

isible 

Figure 1 : A snap shot of an ORU with mirror 
surface moving through cluttered background 

Pose estimation, along with object recognition, 
has been extensively studied in the past decades 
[2,3,4]. However, to our knowledge, very little work 
has been conducted to deal with all or most of the 
issues mentioned earlier. In this work, algorithms 
are proposed to detect and track image features 
(against highly reflective surfaces and cluttered 
background), to estimate poses based directly on the 
relationship between locations of model features in 
3-space and corresponding features in an image 
coordinate system. The algorithms sidestep camera 
parameters when they are not available or when the 
parameters changed. While there are usually 
multiple cameras set up for ORU insertion and 
removal, all of them may not be in good working 
condition or in a configuration favorable to 
integration of information when needed. In this 
work, a basic framework will be established for 
estimating pose from a single camera in an 
uncooperative environment. The framework will be 
extended in the near future to integrate information 
from multiple cameras. Also, since initial pose 
estimates are usually available from other sensors 
(such as joint angles of manipulators), this paper 
will focus on updating of pose estimate as new 
images are acquired. 



The remaining of the paper is as follows. The 
projective relationship between a 3D point and its Xi= 

PNXi + P O ~ Y  + ~ 0 2 ' 1 +  Po3 

2D ~roiection is described in section 2. Algorithms p2oXJ + p21Y + pzzZl+ P n  . .2 - 
for moving edge detection and model based feature 

Y,= 
~ 1 0 ~ ~  + PIIK +  PI^', + P I ,  

detection and tracking are presented in section 3 and 
section 4 respectively. Experimental results are p2oxl + p21K + ~ 2 2 ' 1  + P23 

given in section 5, followed by concluding remarks The above equations be in term 
in section 6. of p ,  where p is a column vector. 
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2 Computation o f  Projective Matrix Given six correspondences between 3D points and 

The mapping between a 3D point and its projection their associated image projections, a system of 
through a camera is dictated by camera internal and twelve linear equations (formed by stacking six of 
external parameters. Internal camera parameters the above equations) is obtained with twelve 
include the focal length, camera center, as well as unknowns P I , .  Thus the twelve elements of P can 
lens distortion coefficients, while external camera 
parameters describe the transformation between the 
(3D) camera coordinate system and the reference 
coordinate system. The mapping between a 3D 
point and its projection could be formulated by 
using a pinhole camera model along with proper 
modeling of lens distortion (primarily in the radial 
direction). As lens distortion can be handled 
separately, it will be left out in the following 
discussion. For a world point M ( X , Y , Z ) ,  and 

corresponding (undistorted) image point m(x,  y) , 
their relation in projective spaces [5,6] (expressed in 
homogeneous representation), is described by 

Where K is an upper triangular matrix containing 
internal camera parameters, R and t are rotation 
and translation matrices, and P = K[R' - ~ " t ]  is 
a 3 x 4  matrix, known as the camera projection 
matrix. It can be seen that the coordinates of a 3D 
point M ( x , , Y , , z , )  and its 2D image point 

be estimated, up to a scaling factor, by solving a 
system of linear equations. The initial estimate can 
then be refined through an optimization process such 
as Levenberg-Marquardt optimization. It has also 
been shown that K , R , t may be extracted from 
P as follows. Let P = [ P , ~ ,  P,](where P,,, is the 

first 3 x 3 sub-matrix of P , and PC the last column 

of P ), then P,x, = KR , and R is a rotation matrix. 

The characteristics of K and R make it possible to 
have them (roughly) computed through 
QR factorization or using vector geometry, (though 
more image frames acquired with fixed internal 
camera parameters are needed in order to obtain 
better estimates of K and R ). The associated 
translation matrix T can also be obtained since 
T =  K - ' P , .  

3 Moving Edge Detection 

However, P, K, R, T cannot be obtained 
without related image and model locations being 
estimated with sufficient accuracy. One major 
thrust of this work is to develop a novel technique to 
accurately detect and track image features of ORUs 
with highly reflective surfaces moving against a 
cluttered background. Physical comers (well 
defined by adjacent edges) are selected as primary 
model features, and surface points with distinct 
textures are considered as secondary. Locations of 
comer features are determined by intersection of two 
adjacent edges as discussed in the next section. If a 
sufficient number of comer features are not detected, 
a search for "textured" points will be conducted 
using template matching by taking small rotations 
into consideration. 

m(x,, y, ) are related by 



Extracting objects from cluttered background is by 
itself a highly challenging task. This is especially 
true in cases where objects of interest have similar 
intensity profiles as background, and even more so if ; 

object surfaces are highly reflective. The human 
visual system has a great capability for determining 
figure ground separation using various cues. One of 
these cues is motion. For ORU insertion (or 
removal), relative motion between the worksite and 
the ORU in question (or the tool to remove the 
ORU) provides an important cue for separating the 
ORU (or tool) from the background (including the 
worksite). While the motion cue alone is not 
sufficient to facilitate the separation of moving 
objects from stationary background, it does suggest 
where edges (or high intensity gradients) of the 
moving objects have been (except those parallel to 
the motion of the objects). One method to "extract" 
the motion cue is through differencing of 
consecutive image containing the moving objects. 
However, differencing two consecutive images does 
not indicate the direction of motion. This ambiguity 
could be easily resolved by using three consecutive 
images, instead of two, for extracting motion cue 
(and "moving" edges). Based on this observation, 
an algorithm is proposed to detect moving edges. 
The algorithm is described as follows. 
Let I,, I , ,  I,  be three consecutive images. Compute 

two difference images DI,, = D l f ( I , ,  I ,)  and 

I = D i ( ,  I )  , where ( I , ,  I , )  is 
(hi 
\"I 

defined such that a pixel in DI, = D l f ( l , ,  I , )  is 
Figure 2: (a) An image of an ORU and (b) its edges 

set to the pixel value of the corresponding pixel in extracted through moving edge detection 
source image I, if the difference between values of 

its corresponding pixels in the two source images 
exceeds a preset threshold (e.g. 16 out of 256). 4 Model-based Feature Tracking 
Otherwise, the pixel is reset (to 0). Next compute a 
composite image CI, = And(DI,,,DI,,) , where 

And(DI,,DI,) is defined such that a pixel in 

CI, = And(DI, ,Dl,)  is set to the average pixel 

values of the corresponding pixels in the two source 
images, if both pixels are set. Otherwise the pixel is 
reset. At this stage, the composite image 
CI,  indicates where moving edges may be. Finally, 
the (detectable) moving edges can be located 
through bit-wise And of the image CI, and an edge 

map EI, (computed by applying any proper edge 

detector to image I, ). Figure 3: An example illustrating physical comers in 
black dots and texture features in white dots 

Shown in Figure 2 is the center image (a) of three 
consecutive images and the image in (b) containing Features used in this work include comers 
extracted moving edges. It can be seen that the and adjacent straight edges (if available), as well as 
resulting image gives a clear indication where the points of high contrast and patches with distinct 
moving edges are located. texture on the surfaces of target objects (i.e. ORUs) 

as shown in Figure 3. Physical comers and straight 



edges have been widely used as features for 
facilitating geometric computation. However, those 
on occluding contours of target objects may be 
sensitive to interference from spurious features 
detected from background. This problem may be 
alleviated by incorporating texture features. 

As the main focus of this work is to deal with 
objects with highly reflective surfaces moving 
against cluttered background, feature recognition 
(matching) is a very challenge task. In this work, 
moving edge detection and model-based feature - - 
tracking are proposed to alleviate this difficulty. 
Moving edge detection is used to filter out most 
edges associated with the background. Model-based 
feature tracking provides constraints to pinpoint 
where features of interest are located. It is carried 
out as follows. A wire-frame of the object is 
generated based on the predicted pose. Each edge of 
the wire-frame is labeled as an occluding edge, 
visible internal edge, or invisible edge. For each 
point on each visible edge, a "peak" pixel with the 
highest intensity gradient is searched for in a small 
neighborhood along the direction orthogonal to the 
predicted edge direction. The location of the actual 
edge is then determined by fitting a line over all 
"peak" pixels associated with each visible edge. A 
RANSAC like procedure is needed to exclude 
outliers from line fitting. After the actual locations 
of all the visible edges are determined, "corners" can 
then be located through intersection of adjacent 
edges. It should be pointed out that moving edge 
detection could not detect edges parallel to the 
motion of the observed object. In this case, the edge 
map of the processed image is used to locate missing 
edges. 

A data structure for organizing model features is set 
up to facilitate model-based tracking. The root of 
the data structure contains all parts of the associated 
model. Each of the parts could be polyhedral, 
cylindrical, spherical or other types. For brevity, 

Shown in Figure 4 is an example illustrating model- 
based feature detection and tracking. Figure 4(a) is 
an image overlaid with external edges (in thick 
lines) and internal edges (in thin lines) at predicated 
locations. Locations in the previous image frames 
are used as predicted locations for now, and will be 
computed using a Kalman filter for more robust 
detection in the near future. Figure 4(b) is the same 
image overlaid with detected edges and corners 
(intersections of the edges). 

only the data structure associated with a polyhedral 
part will be described. Each part consists of all the 

(b) 

faces of the part. Each face consists of enclosing Figure 4: An image of an ORU overlaid with (a) its 
edges and internal edges, as well as surface predicted wire frame, (b) physical edges detected 
orientation and surface type. (No feature would be through model-based edge detection 
detected on a face with a mirror surface). Each face 
may also have texture features with associated 
"texture" description. Each edge has two end 
points. All geometric primitive (i.e. face, edge, and 
point) are encoded with related geometric 
information. Additional fields are attached to each 
geometric primitive to maintain geometric and 
topological information of its projection on the 
(current) processed image. This information 
includes visibility, tracking status (e.g. acquisition, 
tracking, loss-of-tracking), predicted image location 
and image edge orientation. The information greatly 
simplifies tracking and feature correspondences 
(between image features and model features). 

5 Experimental Results 
The proposed algorithms for moving edge detection, 
and model-based feature detection and tracking have 
been implemented and applied to stored image 
sequences of ORU insertions carried out in the 
Robotic Systems Evaluation Laboratory at the 
NASA Johnson Space Center. Formulation for 
computing projective matrices from 
correspondences between image features and model 
features has also been implemented. Shown in 
Figure 5 is an image overlaid with a wire-frame 
generated with the estimated pose (projective 



matrix). It can be seen that the wire frame aligns 6 Concluding Remark9 
fairly well with the ORU in the image, though 
accuracy may be further improved. Results from We have presented in this paper results from our On- 

another two test runs (on two different O R U ~ )  are going work of use of machine vision techniques to 

shown in Figure 6. ,411 results seem to validate our vision-guided insertion and of 

proposed approach. ORUs (with highly reflective or mirror surfaces) 
against a cluttered background, as typically found on 
the ISS Algorithms such as moving edge detection 
and model-based feature matching and tracking have 
been proposed to deal with uncooperative 
environment with encouraging results. Kalman 
filter formulation with image feature locations as 
measurements and estimated pose of ORUs as states 
will be developed in the near future. It is expected 
that the proposed algorithms will be made even more 
robust when integrated with Kalman filters. 

Work reported in this paper has been conducted with 
an image sequence from a single camera. It will be 
extended to integration of images from multiple 
cameras as would be available on the ISS. In other 
words, the techniques proposed here could be either . . .  

Figure 5: An image overlaid with its wire-frame applied to cases where only a single camera is 

generated with the estimated projective matrix available, or extended to the case where fusing the 
information from multiple cameras would make 
pose estimation more efficient and more robust 
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