14—1 Machine Vision for Medicine of 21st Century

Nicholas Ayache,
Epidaure Project,
Inria
2004 Route des Lucioles,
06902 Sophia-Antipolis, France.
ayache@sophia.inria.fr
http://www-sop.inria.fr/epidaure/

Abstract

Medical Image Analysis, Surgery Simulation, and Medical Robotics are young scientific fields with huge potential applications and many challenging research problems. I will present a list of such problems including rigid and deformable registration of multimodal brain images, motion analysis from dynamic sequences of cardiac images, and soft-tissue modeling for liver surgery. I will also discuss some recent advances and perspectives, and illustrate my presentation with current projects involving our research group Epidaure at INRIA. Interested readers can find a recent bibliography on the subject in the following surveys [1, 2, 3], in the proceedings of the MICCAI conference [4], or in the recent issues of the MedIA, TMI or CAS journals [5, 6, 7].

Acknowledgments

The author wants to acknowledge David Rey and the Epidaure group at INRIA for the preparation of this talk, and also Gilles Kahn for his permanent advices and support.

References

- N. Ayache. Medical Image Analysis and Simulation. In Advances in Computing Science, ASIAN'97, volume 1345 of Lec. Notes in Computer Science, pages 4-17, December 1997.
 Springer.
- [2] N. Ayache. L'analyse Automatique des Images Médicales: Etat de l'Art et Perspectives (In French). Annales de l'Institut Pasteur, 9(1):13– 21, 1998. Numéro Spécial sur les progrès récents de l'imagerie médicale.
- [3] D. Duncan and N. Ayache. Medical Image Analysis: Progress over Two Decades and the Challenges Ahead. IEEE Transactions on Pattern

- Analysis and Machine Intelligence, 22(1):85–106, January 2000.
- [4] Medical Image Computing and Computer Assisted Intervention Conference. MICCAI, http://www.miccai.org/.
- [5] Medical Image Analysis Journal, Oxford University Press, http://www.oup.co.uk/jnls/list/mediaj/.
- [6] Transactions on Medical Imaging, IEEE, http://www.ieee.org/organizations/pubs/.
- [7] Computer Aided Surgery Journal. Wiley, http://jws-edcc.interscience.wiley.com/cas.
- [8] D. Rey, G. Subsol, H. Delingette, and N. Ayache. Automatic Detection and Segmentation of Evolving Processes in 3D Medical Images: Application to Multiple Sclerosis. In *Information Processing in Medical Imaging, IPMI'99*, volume 1613 of *Lec. Notes in Computer Science*, pages 154–167, June 1999. Springer. http://www.inria.fr/RRRT/RR-3559.html.
- [9] A. Roche, X. Pennec, M. Rudolph, D.P. Auer, G. Malandain, S. Ourselin, L.M. Auer, and N. Ayache. Generalized Correlation Ratio for Rigid Registration of 3D Ultrasound with MR Images. In Medical Image Computing and Computer Assisted Intervention Conference, MIC-CAI'00, October 2000. http://www.inria.fr/RRRT/RR-3980.html
- [10] J. Declerck, N. Ayache and E. McVeigh. Use of a 4D Planispheric Transformation for the Tracking and the Analysis of LV Motion with Tagged MR Images. Research report. October 1998. http://www.inria.fr/RRRT/RR-3535.html
- [11] G. Picinbono, H. Delingette, and N. Ayache. Real-Time Large Displacement Elasticity for Surgery Simulation: Non-Linear Tensor-Mass Model. In Medical Image Computing and Computer Assisted Intervention Conference, MIC-CAI'00, October 2000.

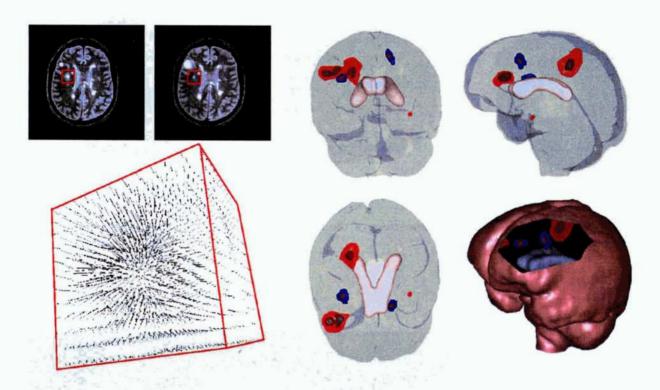


Figure 1: Automatic detection and quantification of evolving lesions from 2 successive Magnetic Resonance Images of a patient with multiple sclerosis (there is an interval of 2 weeks between the 2 images) [8].

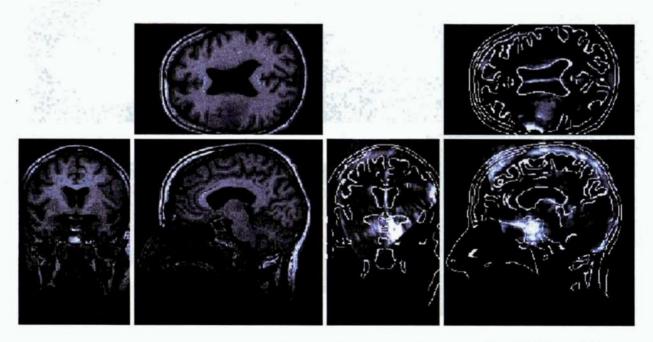


Figure 2: Automatic registration of per-operative 3-D ultrasounds with pre-operative 3-D Magnetic Resonance Image for neuroendoscopic surgery [9].

Figure 3: Automatic analysis of the deformations of the left ventricule from a dynamic sequence of tagged magnetic resonance images. [10]

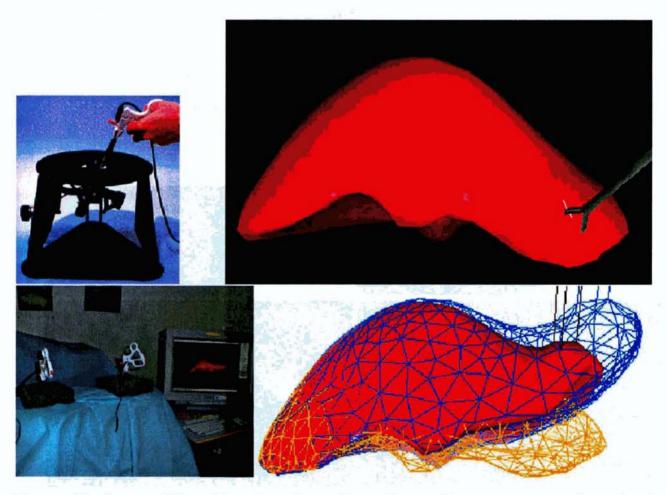


Figure 4: Non linear modelling of liver tissues for simulation of minimally invasive surgery with visual and haptic feedback [11].