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Abstract

To enhance the accuracy of rotation and translation
parameters of 3-D positions calculated from two depth
images, we present an algorithm to calculate the
registration error. First, we derive the camera error from
triangulation, which is represented in a covariance matrix.
Then we find orientation and position parameters of an
object. We verify that inclusion of the camera sensitivity
enhances the accuracy of registration from computer
simulations and experiments.

1 Introduction

Since range finders with high accuracy are becoming
commercially available, applications of “depth data to
modeling a three-dimensional (3-D) object or to medical
research area have been greatly increased. A range image
q_r}?vides a depth or surface information from a front view.

erefore, it is necessary to_merge several range images
from a side or rear view of the same object to build a
complete 3-D model. To fulfill the requirement, we need to
estimate the translation and rotation parameters of the
range data between the images. Many works have been
done to find registration parameters: iterative closest point

ICP) algorithm on two range data viewed from the
ifferent “directions on an object LI-J]. a method usin,
statistical criterion function for the accuracy of initia
values of the ICP algorithm [4], a method applying the ICP
algorithm to free form objects [5], a method using the line
correspondence [6], and a method to segment outliers from
range data with least mean squares (LMS) and using the
ICP algorithm to estimate registration parameters [7].

To achieve accurate estimation, the precise
measurement of depth is essential. But the depth
information in real absolute world coordinate cannot be
known and depends on several factors. Image noise and

uantization errors are lalplcal factors. Especially these
actors are deeply related to camera setting parameters.
Therefore to calculate more precise relative registration
parameters, the camera sensitivity, which represents how
sensitive the coordinate transformation between world
coordinate and image coordinate is, is to be compensated
in the process ol're]c__g)lstmtmn. The camera sensitivity can be
interpreted with 3-D data measurement error. The analysis
of 3-D data measurement error has been an important
research area: a method to analyze a triangularization
method assuming that location of 3-D points has uniform
probability distribution within unit volume [8], a method to
use data redundancy after acquiring more than two range
data of an object from the various locations of a camera [%]
a method considering the system parameter of a camera
related to error such as the separation between sensor
elements, the camera lens focal length, and the sensor array
dimension [10], and a method considering noise for the
estimation of registration parameters of a moving object
[11]. Also there have been various works on error analysis
in measuring the location of 3-D points [12-14].

We present the error (camera sensitivity) in 3-D
position measurement to improve the accuracy of the
registration. The estimation using a covariance matrix
based on the camera sensitivity as error weights is
groposcd. This paper is structured as follows. In Section

, we present a method acquiring range data. In Section 3,
we present an expression for the camera sensitivity in the
range measurement. In Section 4, we estimate registration

parameters with the groposed error weights from the
camera sensitivity. In Section 5, we present experimental
results comparing the estimated results obtained with and
without error weights. Finally, we conclude in Section 6.

2 Measurement of Range Data Using
Triangulation

Fig. 1 illustrates the principle of a depth measurement
method based on triangulation. It has a structured light
which divides a space into 2" regions from n sets of images
[tl‘S]. From the image, we can calculate the distance from
the camera to the surface of the object.

After camera calibration, we obtain a transformation
matrix (T,) between the world (C,,) and camera coordinates
(C)), and a transformation (T,) between the world (C,) and
the projector coordinates (C,). The 3-D coordinate values
of the object are calculated according to the following
procedures:
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where the indices ¢ of h. and p of h, denote camera and
projector, respectively, and u, v, and w represent |ma%e
lanes of the camera and projector coordinate, respectively.
e parameter /i represents the homogeneous coordinates.
After removing A, and A, from (1) and (2), Q, V, and F are
derived as follows:
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Figure 1: Determination of depth from a structured light.
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Therefore, 3-D coordinate values V are obtained by {.7)‘ In
other words, with two camera parameter matrices, T, and
T,, together with image coordinates (u, v) and the space
code w, we can calculate a 3-D position (x,,, Vi, Zu).

3 Estimation of the Camera Sensitivity

The camera position u, v and the space code w have
error due to the image noise and quantization error. In this
section, we analyze the camera sensitivity with the
variance of u, v, and w on the calculated 3-D position (x,,z).

Error of a 3-D coordinate position can be expressed as
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and (8) is expressed in matrix form:
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E (Expectation) of the square of 3-D coordinates becomes
a covariance matrix as defined by

Ax
El|ay|[ax Ay Az]|= E(aP)AP))
Az
= E(SAm)(SAm)’
= ESAmAm's’). (D

If we assume identical independent distribution (i.i.d.) on
Am, then we can obtain the following results:

o, 00 00
E(AmAm‘)=| 00 o, 0.0 (12)
0.0 00 o’
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Since S and §' are deterministic, the covariance matrix
becomes

Ax
El|Ay[[ax Ay Az]|=c3SS'
Az

(13)

. 2 2 2 .
after assuming that 6, = 6,°= 6, = 6°. We will employ the
covariance matrix as error weights for estimation of
registration parameters.

4 Registration with the Estimated Position
Error Using the Camera Sensitivity

We present the rotation of an object between the two
range images with a unit quaternion [116] that has the
advantages of the reduced computational complexity, and
estimation of registration parameters is done with a
nonlinear numerical optimization, Levenberg-Marquardt
method [17].

4.1 Representation of Rotation

In general, rotation transformation is expressed as a
matrix. It has a simple form and easy to understand.
However, it has six constraints to satisfy the orthonormality
of the unitary matrix. On the other hand, orientation angle
representation has only three parameters. However its
trigonometric_nature makes it cumbersome for numerical
analysis. Unit quaternion representation of orientation
consists of four real numbers, and a constraint which
requires that the norm of four real components should be
unity. Also the amount of calculation is greatly reduced.
The quaternion ¢ is expressed with the complex notation:

q=qo+iq.*jq,+ kq.. (14)

A point in the 3-D space is expressed as the following
quaternion f having only imaginary parts,

t=0+ it +jt, + kt.. (15)
A point, ¢, rotated by a unit quaternion r is expressed as
t'=rtr (16)
and rotation r is as follows:
r= cos{%} + sin(%yu= ro +ir, + jr, +kr,  (17)

where rotation angle and rotation axis are ¢ and o,
respectively. ) ) g

Unit quaternion constraint requires ro+r, +r, +r, =I.
Therefore the rotation angle and the axis are calculated
from ry, ry, ry, and 7.

4.2 Levenberg-Marquardt Method

When a model is nonlinearly related to undetermined
parameters a;, 1 < k < M, the x~ error function is defined
and parameters are searched to minimize the error function.
Due to nonlinear dependency, minimization procedure is
iterated until the parameter value converges to a local
minimum. When a model containing parameters is

y =y(x:a), (18)
the ¥° merit function is written as
N 2
2 _ Y= y(xl';a)

where N is the number of data used for the estimation of
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Figure 2: Images used in experiments (Cube).

(b)
Figure 3: Images used in experiments (Polyhedron).
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model parameters. For our experiments, the equation can
be modified as

N
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by

The error weight is the error covariance matrix of

[vi=»(x;T)]. Here we assume that we have N corresponding
points between reference image 1 and image 2. A point y

Ln i'rlpagc 1 corresponds to a point x; in image 2 transforme
yT.
The 3-D position measurement error at the reference
position 1, that in image 2, and those error values after
transforming the point in image 2 to the reference image 1
are represented as ey, e,, and e,’, respectively. Then we can
derive the error weighting matrix I as

Ele, e|'] =L, (21)
Ele;e,] = E, (22)
e)'=Te, (23)
Ele)’e,' | =E[Te e/ T]=TET" (24)

Therefore, the total error is defined by

(e- e )(e;— €)' = (ex—ex)(e;" — ;')
=g 6 —e;e;- e’ e+ e'e (25)
The expectation of (25) becomes

El(e;—e;)e;—e;) |=E+TET' (26)

and the error weight matrix, E, is expressed as £,+T E,T".
For simplicity, we can assume that the rotation, R, or T is
small, then K can be upEruximaicd as the identity matrix I.
Then it follows that = E,. Hence we can use the

approximation £ = 2L,

]

5 Experimental Results and Discussions

Fig. 2 shows range images of a cube used in
experiments, where pixels nearer to the camera are brighter.

Space encoded light patterns are pr_n(jccwd through an LCD,

and the images are taken from a CUD camera. The range
data is obtained u:\'ilur'{?’}, The image (a) is the object at the
reference position. The images (b) and (c) represent the
object of (a) translated by 2 ¢m in the x coordinate and the
object of (a) translated by 2 em in the y direction. The
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(c) (d) (e)

image (d) represents the object (a) rotated by 10° with
respect to the z coordinate. 'I'Le image (e) is obtained after
translating the object (d) by -3 ¢m in the x direction and by
3 cm in the y direction. The object was translated and
rotated on a ruled paper. We “assume that the point
correspondence of the vertices has been established. Fig. 3
is a set of range images of a polyhedron.

The error weight from the camera noise sensitivity has
been applied in estimating the registration parameters.
The camera sensitivity is calculated from the variations of
x, y, and z with respect to u, v, and w at point in Fig. 2(c),
and then the covariance matrix, £ = o°SS', is used as error
weights which has the following value:

X, =o’ss'
1432.2678  1651.9968 —680.4394
=| 1651.9968 1953.6555 ~796.5092 27)
—680.4394 -796.5092 346.5571 ).

On the other hand, the covariance matrix, X, without
considering error weights has the following value:

1.0 0.0 0.0
=100 1.0 00

= 0 19 (28)
00 00 1.0,

The scale factor on the error weight £ has no effects on
the rotation parameters.

Tables | and 2 show the comparison of estimated
registration parameters with and without error weights
using the point matching for Cube and Polyhedron,
respectively. It shows that rotation parameters are closer to
the exact values than translation parameters, regardless of
the Eositiqns of an object in Fig. 2. o

Especially the rotation parameters considering error
weights are much closer to the exact values than rotation
parameters ignoring measurement error weights. The
convergence of estimation with error weights is faster than
that of estimation without error weights. Root mean square
error (RMSE) i1s defined as the square root of mean value
of squares of the difference of distance between 3-D coor-
dinate values transformed by exact registration parameters
and 3-D coordinate values transformed by estimated
registration parameters. It is proportional to the Euclidean
distance from the exact position to the estimated one.

Table 3 compares the RMSE with and without error
weights. We can verify that the RMSE with error weights



Table 1: Comparison of registration parameters estimated
with and without error weights Z (Cube).
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Table 2: Comparison of registration parameters estimated
with and without error weights E (Polyhedron).

exact values without with
r .t r LI ¢ r HE |
Tol, | 10 | 37| 09986 5o [099990 .
bl%is 0.0 0.0 0.092 . 13 0.089 09
ni%] 00 {00 -0045¢ 5o |-0031] %
r.oF 0 00 7Y ] 0.0009 0 T 0.003 : ™
: ; 0.9990 |
roig| 10 i3, |09981: oy 10061 : 4.3
Ty 0.0 0.077 | ;
C iy 6.0 i 8.7 0.059 : 7.2
ni%l 0o i 200068 50| 0P
7 Lm0 {2 et § R e
ro ‘. 0.986 0.0 0.9755 05 0.9802 ; 06
dlm=i; 0.08 0.0 0.095 3.05 0.091 21
7| 0428 gg | 1018 | s | 0098 § e
r: 1] 1) U 0.13 . ! 0.131 : y
ro 0.986 0.9701 0.9811 |
r. %0008 {37 | 0099 | &1 | 0081 | 41
¢ 5 ¢ 3.7 5.2 ¢ 5.5
AR R N
Al 0 % ) G 0.12 o 0.139 : ™

is smaller than that ignoring the error weights. We observe
that the estimation of registration parameters based on
error weights from the camera sensitivity is more accurate
than that without error weights.

6 Conclusions

The sensitivity of 3-D position error caused by 2-D
camera position is calculated, and the obtained error
covariance matrix is applied to estimation of registration
parameters. It results in better estimation of registration
parameters. Experiments show that our proposed method
results in more exact registration parameters.
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