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Abstract 

This paper presents a physics based approach to 
fitting object models to images. The process is mod- 
elled as a movement of a rigid body in a viscous 
environment on a flat surface. The driving forces 
and moments are obtained by analyzing a single 
image. Gradients and their distances to projected 
model features support the development of accelera- 
tion and velocity of the model until fitting the image. 
Accurate pose estimates are achieved in real-time, 
since the computational cost is lower than in Gauss- 
Newton based approaches. Moreover, the algorithm 
is less sensitive to illumination changes and shad- 
ows. Parameters of the dynamical system can be 
interpreted in physical terms. 

1 Introduction 

In many industrial and robotics applications such 
as quality control, object manipulation or automatic 
mounting it is essential to determine the exact pose 
of a single object whereas the object class itself is 
known. Various computer vision approaches deliver 
both, the object's class and its pose (cf. [9] [4]). This 
somehow combined approches come with the draw- 
back of mostly inaccurate pose parameters. Recent 
methods of pose parameter optimization based on 
the Gauss-Newton approach [7] [6] [lo] are suitable 
for objects of low complexity and simplest topology, 
since the computational cost of setting up the Ja- 
cobian matrices is very high for complex polyhedral 
models. Moreover, these methods often demonstrate 
poor convergence. In this contribution we present a 
pose refinement algorithm based on the modelling of 
the convergence process as a physical system. This 
allows clearer interpretation, and hence control, of 

the dynamics of the fitting process. In order to en- 
sure proper convergence, the required initial coarse 
pose estimate is obtained from an Eigenspace ap- 
proach originally applied in the already mentioned 
object recognition context. Our working environ- 
ment is a flat table including a calibrated setup. We 
are therefore restricted to three degrees of freedom: 
a translation (x, y) and a rotation cp about the verti- 
cal z-axis. An industrial application in which our al- 
gorithm is integrated, requires real-time behaviour. 
In addition to a general efficiency of the procedure, 
a compromise between accuracy and speed ought to 
be well controllable. Robustness and capability to 
handle complex objects stand for reason. 

Some related work based on dynamic systems to- 
gether with exact pose determination was carried 
out mainly in the fields of vision based tracking 
(cf. [8]) and augmented reality applications [3] [12], 
where velocity was used to predict model positions. 
This paper is organized as follows. Sect. 2 will give 
a short review of Gauss-Newton based techniques, 
Sect. 3 introduces the new concept of dynamic model 
fitting based on the development of acceleration and 
velocity. Results are presented in Sect. 4, Sect. 5 
concludes the paper. 

2 Previous Work 
The fitting of parametric 3D models to images 

was first addressed by Lowe [7] and extended by 
Aratijo et al. [I]. These methods are based on the 
Levenberg-Marquardt technique [7], which is able to 
adapt between Gauss-Newton and pure gradient de- 
scent behaviour. Both, gradient weighting [lo] and 
adaptive gradient search [2] help to avoid matching 
errors and to stabilize the solution. Inherent to all 
these methods is the fact that a suitable starting 
parameter vector must be known, in order to ensure 
convergence towards a global minimum. The solu- 
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where P(~+') and p(" denote the pose parameter 
vectors in iteration i + 1 and i ,  respectively. The 
parameter updates A p  are given by 

J A ~  = e (2) 

where J is the local Jacobian of the 3D-2D map- 
ping function at  p(i)  and e are the observed errors 
in 2D. Each correspondence between a 3D model 
line, its projection in the image and the respective 
perpendicular fitting error results in two rows of the 
matrix J and the vector e (x- and y-coordinate, re- 
spectively). The number of equations to solve for an 
optimal update is 2nk, where n is the number of vis- 
ible model lines and k denotes the number of fitting 
basepoints per line. For complex models, as used in 
our case, J becomes very large. The simplest case 
for computing a solution is solving for A p  in a least 
squares sense 

The proposed method calculates a set of forces 
(see lines in Fig. 5 and Fig. 7) for each visible model 
line. Forces are established between segments of pro- 
jected model lines and edges detected in the image. 
Depending on the physical model, the magnitude of 
forces is weighted according to the distance to the 
gradient and its magnitude. 

Modelling Force Magnitudes 
A straight-forward implementation for modelling 

the force magnitudes is the application of the well- 
known Hook model 

F = DAx (6) 

where a force F is proportional (factor D) to elonga- 
tion Ax. Problems arise if Ax  becomes too large or 
if some line segments are matched with wrong im- 
age features. This may destabilize the solution like 
in the Gauss-Newton approach. 

This requires O(dnk) error calculations perpendic- 
ular to projected model lines, O(dnk) evaluations 
of partial derivatives and O(dnk) operations for the 

Forces can also be interpreted as results of local 
(3) field gradients A 1  

F={*x i f x # O  
0 elsewhere . . 

least squares parameter In the case Note the singularity at x = 6. It can be easily over- 
of a Levenberg-Marquardt optimization or gradient come by inserting a linear slope near zero in Eq. 7. 
weighting, even more operations are needed. Finally, a resulting force and a resulting moment 

in 2D are calculated (see arrows in Fig. 5 and 7). 
3 A New Physics Based Approach Both are projected onto the workplace and form the 

input to a differential equation system which mod- 
The proposed method is based on a representa- 

els the movement on the workplace. The computa- 
tion of an iterative fitting process as a development 

tional cost of each fitting step is O(dnk) for force 
of a dynamical system. 

calculation and O(1) for resulting force and moment 

Basic Equations 
We describe such a system by means of dynamical 

equations modelling movements of a rigid body in a 
viscous environment. 

m represents the mass of the object, O is the mo- 
ment of inertia, UT and o~ denote viscosities. The 
latter are attenuation constants and are used to de- 
limit acceleration while approaching the solution. 
F, (x, y, cp), F, (x, y, cp) are the x- and y-components 
of the resulting force calculated from the image, 
M (x, y, cp) is the resulting moment. @ can be ex- 
pressed as 

where rc  is the radius of gyration of the object. Af- 
ter inserting Eq. 5 in Eq. 4, m can be set to unity 
mass, without loss of generality. 

. . 

calculation. 
Numerical integration of the differential equation 

is done by a 4th order Runge-Kutta method. It is 
well known from literture ([5] [ll]) that the accuracy 
of the solution at  a certain point depends on the 
choice of the stepsize during integration. 

Reducing Oscillations: Adaptive Stepsize 
It can be seen that the stability of the solution 

strongly depends on the progress over time of F and 
M and their smoothness. Non-smoothness arises 
from false edge matching. False edges are likely far 
from their corresponding model edges, which results 
in higher force contribution when using the Hook 
model (Eq. 6). For the field model in Eq. 7, the 
contribution of false edges in force and torque fields 
is negligible with a high probability. Thus, avoiding 
false matches (especially with thin model structures) 
means avoid oscillations while approaching the solu- 
tion (see [2]). The solution is computed with a lower 
number of iterations and lower computational cost. 

Since the solution should be computed with a low 
number of iterations, without loosing accuracy, an 



adaptive stepsize scheme is applied. The stepsize 
of the numerical integrator is varied proportionally 
to the progress of resulting forces and moments. In 
most cases the adaptive scheme reduces oscillations 
around the optimal solution. 
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Figure 1: The progress of the computed translation 
(x, y) and the rotation cp over the number of iterations. 
Hook's model was applied in this case. 
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Figure 3: Hook's model together with an adaptive step- 
size: Note the progress of the rotation angle, which 
converges only after approx. 100 iterations (not shown 
here). 
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Figure 4: The best case: field model with adaptive s tep  
size. The convergence is reached after a few iterations. 

pose (measured by placing a part with a robot) were 
Figure 2: The progress of the (x, Y) and the 0.3 mm for translation and 0.2 degrees for rotation. 
rotation cp for the field model. Rerunning the procedure from different starting po- 

sitions ( f  5mm and f 5 degrees) resulted in less than 

4 Experimental Results 
We tested our method on several objects of dif- 

ferent toplogical type and complexity. Their sizes 
ranged from 30 to 80 mm. The distance to the cam- 
era was approximately 700 mm. Two of these ob- 
jects are shown in Fig. 5 through Fig. 8. The camera 
(748x576 pixels, 11 mm lens) was calibrated using 
the Tsai procedure. The starting positions (i.e. the 
coarse pose parameters obtained from an Eigenspace 
method), differed from the true solution usually less 
than 5 mm in translation and less than 5 degrees 
in rotation. For larger initial displacements, Hook's 
model (see Eq. 6 )  turned out to be more efficient, 
since it is able to accelerate the model very quickly. 
Switching to  the local field gradient model (Eq. 7) 
when approaching the solution, showed the most ef- 
ficient way to obtain highly accurate pose parame- 
ters. The mean residual displacements from the true 

0.05 mm and 0.05 degrees of discrepancy. The de- 
scribed approach turned out to be flexible, fast and 
able to cope with varying illumination conditions. 

5 Conclusion 

A physics based approach to fitting 3D models 
to images was presented. It  avoids the calculation 
of the Jacobian of the mapping function during pa- 
rameter optimization. Thus, pose can be calculated 
with less computational effort, even for complex ob- 
jects. The use of a physical model allows a better 
control of the fitting process. The main benefits are 
speed, high accuracy and fast convergence. Further 
work will focus on the determination of forces based 
on logical and physical constraints, in order to im- 
prove the model-image matching procedure. 



Figure 7: Our method applied to a more complex ob- 
Figure 5: Our method applied to a simple object. Note ject. 
the small arrows which represent local forces, while the 
large arrow represents the resulting force, the small arc 
depicts the resulting moment. 

Figure 8: Final position reached after 25 iterations. 

Figure 6: Final position reached after 20 iterations 
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