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Abstract 

The main goal of content based image retrieval is 
to efficiently retrieve images that are visually sim- 
ilar to  a query image. In this paper we will focus 
on content based image retrieval from large medi- 
cal databases, outline the problems specific in this 
area and describe the recent advances in the field. 
We will also present some of the more significant re- 
sults obtained with ASSERT (Automatic Search and 
Selection Engine with Retrieval Tools), the content 
based image retrieval system developed in our labo- 
ratory. 

1 Introduction 

Content Based Image Retrieval (CBIR) has 
emerged during the last several years as a power- 
ful tool to efficiently retrieve images visually similar 
to a query image. The main idea is to represent each 
image as a feature vector and to measure the similar- 
ity between images with distance between their cor- 
responding feature vectors according to some met- 
ric. Finding the correct features to represent images 
with, as well as the similarity metric depend on the 
image domain and the goal of the retrieval system. 

The list of CBIR systems developed today is long 
and includes but is not limited to QBIC [24], CAN- 
DID [5], PhotoBook [17], MARS [14], ImageRover 
[7]. Usually these systems are founded on the 
premise that images can be characterized by global 
signatures. For example, the CANDID system [5] 
computes histograms from normalized gray levels for 
image characterization and the QBIC system [24] 
characterizes images by global characteristics such 
as color histogram, texture values and shape param- 
eters of easily segmentable regions. 

Medical CBIR systems differ from general pur- 
pose CBIR systems in very significant ways. First 
of all, it is often the case that the clinically use- 
ful information consists of gray level variations in 
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Figure 1: HRCT lung image with a pathology bear- 
ing regzon delineated by an expert physician (white 
contour pointed to by dark arrows). 

highly localized regions of the image. For example, 
in a high-resolution computed tomographic (HRCT) 
image of the lung, a disease such as emphysema 
(shown in Figure 1) manifests itself in the form 
of low-attenuation regions that are textured differ- 
ently from the rest of the lung. Local attributes are 
needed for such situations because the number of 
pathology bearing pixels in an image is small rela- 
tive to the number of pixels in the rest of the image, 
and any global signature would not be sufficiently 
impacted to serve as a useful attribute for image re- 
trieval. This bodes ill for many of the previously 
developed methods for CBIR with regard to  their 
use for medical radiology. 

The need to characterize localized areas of an im- 
age induces an additional complication in medical 
image retrieval systems: such regions may or may 
not be automatically segmentable from the image. 
When the shapes of these local regions are highly 
distinct, as with the ventricular regions in the MR 
scans reported in [6] and high-contrast single tumor 
regions in the images of [18], automatic segmenta- 
tion techniques may succeed. But obviously for the 
kinds of images shown in Fig. 1, there is no chance 
that any of the automatic segmentation techniques 



known today would work. It is for this reason that in 
ASSERT [2] we enlist the help of a physician for de- 
lineating the pathology bearing regions (PBR) and 
any other relevant anatomical landmarks. 

The above discussion motivates us to define three 
areas which are important in the creation of a suc- 
cessful medical CBIR system. First, what features 
are needed to represent the useful information in the 
image? Often the features needed are too many, so it 
is necessary to employ a feature selection algorithm 
to reduce the dimension of the space. Second, what 
retrieval algorithm should one use, so that similar 
images are the ones that belong to the same disease 
class? Third, how could one use user input to im- 
prove the retrieval result? This is often referred to 
in the CBIR literature as relevance feedback. Since 
we will use ASSERT to illustrate these issues, we 
will start with a very brief description of the overall 
system in the next section. 

2 ASSERT Architecture 

Figure 2 illustrates the different modules of our 
system for content-based image retrieval from a 
database of HRCT images. To apply ASSERT to 
a different domain only the shaded modules would 
need be replaced. Initially, a physician delineates 
the PBRs and any relevant anatomical landmarks. 
The system then executes a suite of image processing 
algorithms to create the feature vectors that charac- 
terize the PBRs individually. 

We have experimented with two different sets of 
features. The first set contains a large number of 
"generic" low-level features that capture texture and 
shape information. They are "generic" in the sense 
that they do not require domain knowledge to be 
computed, and they could be applied to other imag- 
ing modalities without significant changes. The sec- 
ond set aims at capturing the visual cues (or percep- 
tual categories) used by physicians to make a diag- 
nosis. The rationale behind that is that it leads to a 
more disciplined way of determining what low-level 
features to extract. It assumes of course that the 
domain expert knowledge can be elicited, which is 
true for the HRCT domain. 

Subsequently, a feature selection procedure is ap- 
plied to reduce the dimensionality of the feature 
space. In figure 2, a decision tree based approached 
is used as the default retrieval method, however we 
have experimented with other approaches as well. 
For more information about the other system mod- 
ules the reader is referred to [2]. 

3 General Purpose Image Features 

With regard to general purpose features we com- 
pute features that are local to the PBRs and fea- 

tures that are global to the entire lung region. 
The PBRs are characterized by a set of shape, tex- 
ture and other gray-level attributes compute with 
standard image processing techniques [lo, 211. For 
characterizing texture within PBRs, a statistical 
approach based on the notion of a gray-level co- 
occurrence matrix has been implemented. This 
matrix represents a spatial distribution of pairs of 
gray levels and has been shown to be effective for 
the characterization of random t,extures. The spe- 
cific parameters we extract from this matrix are 
energy, entropy, homogeneity, contrast, correlation, 
and cluster tendency. In addition to the texture- 
related features, we compute three additional sets 
of features on the pixels within the PBR boundary. 
The first set computes measures of gray-scale of the 
pathology bearing region, specifically, the mean and 
standard deviation of the region, a histogram of the 
local region, and attributes of its shape (longer axis, 
shorter axis, orient,ation, shape complexity measure- 
ment using both Fourier descriptors and moments). 
The second set computes the edginess of the PBR 
using the Sobel edge operator. The extracted edges 
are used to obt,ain the distribution of the edges. The 
ratio of the number of edge pixels to the total num- 
ber of pixels in the region is computed for different 
threshold channels, each channel corresponding to 
a different threshold for edge detection. Finally, to 
analyze the structure of gray level variations within 
the PBR, a region-based segmenter is applied. From 
the results t,he number of segmented regions per area 
and histograms of the area and gray-levels of the seg- 
mented regions are computed. 

In addition to the texture and shape features, a 
PBR is also characterized by its average properties, 
such as gray scale mean, and deviation with respect 
to the pixels corresponding to the rest of the lung. 
Measurement of these properties requires that we be 
able to segment out the lung region (note that the 
lung region is also needed for the measurement of the 
global features we mentioned earlier). To extract the 
lung region, we apply a set of binary-image analysis 
routines [2]. 

The total number of features, 255 in number, 
computed for a PBR is large (details of the set 
of features can be found in [2]). While this gives 
us an exhaustive characterization of a PBR (an in- 
tentional aspect of our design), for obvious reasons 
only a small subset of these features can be used for 
database indexing and retrieval. 

The features actually used are found by apply- 
ing the Sequential Forward Search (SFS) algorithm 
([12, 131) to all the 255 features. SFS is a greedy al- 

'Note that the sense in which we use the word "global" is 
different from how it is commonly used in the literature on 
CBIR. Our global features are global only to the extent that 
they are based on all the pixels in the entire lung region. 



Figure 2: ASSERT Archztecture 

Figure 4: Perceptual categories used by expert physi- 
cians: (a )  Bronchial structure (linear & reticular), 
(b) Honeycombing (linear & reticular), (c)  small 
nodules (nodular opacities), (d) big nodules (nodu- 
lar opacities), (e)  lour-attenuation (low opacities), 
( f )  cystic structure (low opacities), (g) ground-glass 
(high opaczties), (h )  calcification (high opacities). 

gorithm that adds one feature at a time. It adds the 
feature that when combined with the current cho- 
sen set of features yields the largest improvement in 
classification performance. 

4 Features Derived from Physicians' 
Perceptual Categories 

Perceptual category features are motivated by the 
visual structures the physicians use for diagnosing 
diseases in HRCT images of the lung (Fig. 3).  The 
four major categories are [15]: linear and reticu- 
lar opacities, nodular opacities, diffuse regions of 
high attenuation, and diffuse regions of low atten- 
uation. These categories can be called major in the 
sense that, in the physician's mind, they possess a 
strong one-to-one correlation with the various lung 
diseases. The leaf nodes of the tree in Fig. 3 show 
the subcategories that the physicians actually use for 
labeling the PBRs. A PBR may exhibit a pathol- 

ogy corresponding to the major category "Linear & 
Reticular", but the actual visual structure inside the 
PBR would either be linear or reticular, correspond- 
ing to the two leaf nodes in Fig. 3. 

4.1 Linear and reticular opacities 

As the name implies, these patterns consist of 
line-like structures that can either be st,raight and 
elongated, web-like, or circular with a dot-like pro- 
trusion (the last is also referred to as a signet- 
ring pattern). These visual structures are most of- - - 
ten a result' of the thickening of the walls of the 
bronchi (Fig. 4(a)) and peripheral honeycombing 
(Fig. 4(b)). Since the walls of the bronchi are char- 
acterized by adjacent low and high attenuation re- 
gions, they can be extracted by dual-thresholding 
[21]. The following low-level features measure the 
relevant characteristics of such structures: the num- 
ber of bronchial objects and the azlerage thickness of 
the bronchi-walls. Reticular patterns that show up 
as peripheral honeycombing respond to the skele- 
tonization of the PBR, followed by the extraction of 
the following parameters: the number of cells formed 
by the skeleton, the average cell sire, and the number 
of cells adjacent to  the lung boundaries or fissures. 

4.2 Nodular opacities 

The gray values associated with nodular opacities 
carry important information with regard to whether 
the tissue is benign or malignant. HRCT images 
that show this type of evidence can be further cate- 
gorized on the basis of the size and locational distri- 
butions associated with the nodular opacities. The 
nodular opacities appear typically in two different 
sizes: small nodules, which are roughly round and 
less than one centimeter in diameter, and large nod- 
ules of irregular shape, whose "diameter" exceeds 
one centimeter. Sometimes large nodules agglomer- 
ate into large masses, as shown in Fig. 4(d). For 
the case of small nodules, their distribution carries 



Perceptual Categories 

Figure 3: The perceptual category tree. 

diagnostic information. When the distribution is 
random, then the nodules appear widely and evenly 
throughout the lung as shown in Fig. 4(c). Distri- 
butions become non-uniform when nodules attach 
themselves to the boundaries of the lungs or to the 
fissures. Images with nodules respond to feature 
extraction algorithms in which the system first ap- 
plies a threshold to the lung regions, followed by the 
measurement of "roundness" property. The round- 
ness property is particularly effective for extracting 
small nodules. The large nodules are extracted with 
a lower threshold on the roundness parameter. In 
other words, the value of the roundness threshold is 
keyed to the size of the object extracted after thresh- 
olding. Effective feature measurements for images 
with this type of pathology include the average sizes 
of nodules, average roundness of nodules, average 
nearest-neighbor distance between the nodule centers, 
and the gray-level mean of nodules. 

4.3 Diffuse regions of high attenuation 
(high opacities) 

For some of the lung diseases, the entire lung may 
assume a different shade of gray in comparison to a 
normal lung. For example, shown in Fig. 4(g) is 
what is referred to as ground-glass opacity. When 
present, it does not obscure the underlying vessels, 
that is the vessels can be seen clearly in the lungs 
even though the tissues everywhere are characterized 
by a higher level of attenuation. Lumped in the same 
perceptual category is the pattern that corresponds 
to calcification shown in Fig. 4(h). The overall vi- 
sual effect gleaned from the HRCT image is that of 
marked increase in density, similar to bone. Algo- 
rithms capable of separating the normal tissues from 
the ground-glass tissues make use of the fact that 
gray-level histogram for the latter case is strongly 
bimodal, whereas it is primarily unimodal for the 
normal tissues. After the ground-glass tissues are 
extracted, the vascular structure is extracted by em- 
ploying the well-known technique of co-occurrence 
matrices [lo] with different values for the orienta- 
tion parameter. The computed measurements are 
uniformity of energy, homogeneity, gmy level mean 

of ground-glass regions, and the ratio of abnormal 
regions and lung regions. 

4.4 Diffuse regions of low attenuation 
(low opacities) 

All of the previously mentioned perceptual cate- 
gories are marked by increased attenuation (meaning 
higher gray levels) associated with the pixels cor- 
responding to the diseased tissues. The category 
we will describe in this section is marked by de- 
creased attenuation. For example, centrilobular em- 
physema shows up in HRCT images in the form of 
a large number of areas with markedly decreased 
density, as shown in Fig. 4(e). These areas may 
occupy the entire lung region, but are likely to pre- 
dominate in the upper lobes. When the disease 
becomes severe, these areas may join together to 
form a large region of low attenuation. This per- 
ceptual category also includes low-attenuation blobs 
bounded by a high-attenuation background (Fig. 
4(f)). These visual structures respond to the fol- 
lowing feature extraction steps: First, the normal 
tissues and the low-attenuation tissues are separated 
by simple thresholding. (The gray level histogram 
is strongly bimodal for all these diseases.) Next, 
the co-occurrence matrices are computed for the low 
pixels resulting from thresholding. Additionally, the 
number of decreased density regions adjacent to the 
lung boundaries or  fissures is also computed, as it 
carries diagnostic information for the diseases men- 
tioned in this section. 

4.5 Are The Low-Level Features Mea- 
suring The Physicians' Perceptual 
Categories? 

We have used multivariate analysis of variance 
(MANOVA) [ll, 31 to determine whether or not the 
low-level features we use for determining the pres- 
ence or the absence of the perceptual categories are 
doing their job. MANOVA is used to compute the 
means of the low-level features separately for the dif- 
ferent perceptual categories; the between-category 
differences of these means; and a measure of the 



power of the low-level features to discriminate be- This hypothesis testing would, of course, need to 
tween the different perceptual categories. be carried out separately for each category. For the 

The PBRs labeled by a physician are grouped remaining discussion here, we will use Xg,k to denote 
into nine perceptual categories, corresponding to the the kth observation in category 9. , ind while we are 
leaves of the tree shown in Fig. 3. We shall use analyzing the data for category g, we will use Xrest,k 
the following symbols to refer to these nine cate- to denote the kth sample of the rest of the data. 
gories: linear (Glinear), reticular (Greticular), small The mean sample vector for category is denoted 
nodules (Gs-n~dule)~ big (Gbaodule)l high- q. We use to denote the covariance matrix 
opacities (Ghigh), l~w-opacities (G,ow), cystic strut- of all the N~ samples of data, 
ture (Gcystic), ground-glass (Ggg), and calcification In the pdimensional space used for category g ,  it 
(G~al ) .  To keep the part of the discus- is possible to express an observation vector Xgjk by: 
sion general, we will use N, to denote the number of 
perceptual categories. 

For the purpose of applying the tools of 
MANOVA, each observation consists of a vector of 
p low-level feature measurements from a PBR. Note 
that the p low-level features for category A will, in 
general, be different from the p low-level features for 
category B. Additionally, the value of p for category 
A is allowed to be different from the value of p for 
category B. This point is important because the cat- 
egories do not reside in the same pdimensional fea- 
ture space. A pdimensional feature vector is used to 
set a given category apart from all other categories. 

Before MANOVA can be applied, the data must 
satisfy certain assumptions. The most notable of 
these are: 1) each observation Xg,k is a random 
sample from perceptual category g; 2) the random 
samples from different categories are independent; 
and 3) the distribution corresponding to each cat- 
egory is multivariate normal. We believe that our 
data does indeed satisfy the first two assumptions. 
With regard to the third assumption, at this time we 
have taken it as an article of faith, to be tested more 
rigorously in the months to come. Since tools like 
Kolmogorov-Smirnoff tests are available for testing 
this assumption, the reader might wonder why we 
haven't applied such a test. Currently, the sparse- 
ness of the data for some of the perceptual categories 
precludes such an analysis. But, as we accumulate 
more data, this problem will disappear. 

Although MANOVA could be used to analyze si- 
multaneously the data for all the categories (in order 
to determine whether or not sufficient discrimina- 
tion is provided by the features), it is more efficient 
to proceed in the following manner: Let NT be the 
total number of observations available for all per- 
ceptual categories and let Ng be the total number 
of observations, or sample vectors, for category g. 
We now divide the data into two sets, one consist- 
ing of the Ng samples of category g and the other 
consisting of the remaining NT - Ng(= Nrest) sam- 
ples. For this two-class problem, we can then test 
the hypothesis that the p features are able to differ- 
entiate between category g and the rest of the data. 
The data set consisting of the Nrest samples will be 
denoted Xrest and the mean of this data by Xrest 

where is the overall sample mean. This decom- 
position highlights the contribution made by the de- 
viation of the observation vector from its own cat- 
egory mean and the difference between a category 
mean and the entire population mean. The latter 
will be denoted by rg = (z - TI. In the same 
pdimensional space, the expression for the overall 
covariance of the data can now be expressed as: 

This shows that the overall data variance T con- 
sists of two parts: B:  the between category vari- 
ance, which has dB = 1 degree of freedom for the 
two-class problem we are analyzing here; and W :  
the within category residual variance with dw = 
CiE{g , r e s t )  Ni - 2 degrees of freedom. 

To determine whether or not there exists cate- 
gory discrimination information in the low-level fea- 
tures used to measure the presence or absence of 
a category in a PBR, we can perform the follow- 
ing likelihood ratio test. We construct a hypothesis 
Ho : rg = rrest, meaning that the mean for cat- 
egory g is the same as the mean for all other cat- 
egories lumped together within a chosen confidence 
interval in the pdimensional space specific to cate- - - 
gory g. rrest denotes Xrest - X .  To test the Ho 
hypothesis, we first compute Walks' lambda A * :  

The exact distribution of A* can be obtained from 
any standard published table if the size of the cat- 
egory vector is known. A criterion derived from 



Figure 5: Choosing the maximally discriminatory 
features for the small nodule perceptual category. 

the applicable distribution can then be compared 
against a threshold for either accepting or rejecting 
the hypothesis Ho a t  a chosen confidence level. For 
example, when each observation vector consists of 
two low-level features, meaning p = 2, the following 
F-test criterion obtained from the applicable distri- 
bution 

can be compared to a threshold as follows 

to reject hypothesis Ho at confidence level (1 - a ) .  
FdBVd, ( a )  is the upper 100a% of the F-distribution 
with d~ and dw degrees of freedom. 

In this manner, we can determine whether or not 
a given pdimensional feature set can discriminate 
a category vector from the rest of the data. This 
pairwise hypothesis testing is carried out separately 
for all the categories. 

4.6 Choosing the Maximally Discrimi- 
natory Feature Set 

In Section 4, we described the low-level features 
that could be used for determining the presence or 
the absence of each of the perceptual categories in 
an image. For each perceptual category, we test the 
H o  hypothesis for all combinations of the low-level 
features listed in that section at a = 0.1 level. For 
example, for the category Gsflodules we start with 
the four features listed in Fig. 5. The Ho hypothesis 
is tested for all combinations of these four features. 
The total number of these feature combinations is c:=~ C: = 15. The F value of Section 4.5 was used 
to determine the quality of each feature combina- 
tion. We selected the feature combination that cor- 
responds to the highest F value. Fig. 5 shows this 
process pictorially. In this case, the subset {2,3) pro- 
duced the highest F value. This process is repeated 
for each perceptual category. 

4.7 Weighting the Low-Level Features 

If the inequality of Eq. 6 holds for the aforemen- 
tioned pairwise hypothesis testing for each of the 

categories, we can conclude that the chosen low-level 
features discriminate between the prescribed percep- 
tual categories. This also means the sets of image 
features are good for classifying PBRs based on the 
perceptual categories. But the following questions 
remain: What is the relative contribution of each 
of the low-level features to the differences in the 
means of the different categories? Could knowledge 
of these relative contributions be used to weight the 
image features differently? This section addresses 
these two questions. 

To assess the relative weights to be assigned to 
the individual low-level features, we used the Bon- 
ferroni method of multiple comparisons. For the 
sake of explanation, let's assume that we have only 
three perceptual categories: Gcystic, Greticular, and 
GsSodule Let the following two low-level features 
be designated as being capable of discriminating be- 
tween the category GcystiC and the other categories: 
number of cells and average size of cells. Let's as- 
sume that this feature set rejects the hypothesis Ho 
at confidence level 1 - a .  

To ascertain the relative importance to be as- 
signed to each GCystic feature, we compute the dif- 
ferences in the means of the feature values for the 
following pairs of categories: (Gcyaticr Greticular), 
(Gcystic and Gs-nodule) For each such pair, we also 
calculate the uncertainty associated with the mean 
difference. It goes without saying that the larger 
the uncertainty in relation to the mean difference, 
the poorer the feature. These mean differences will 
then be utilized to set a weight vector for the feature. 

Let's first focus on the pair (Gcysticr Greticular). 
For pairwise comparisons, the Bonferroni approach 
can be used to construct uncertainty intervals for the 
individual feature components of the difference vec- 
tor Xcystic-Xreticular Let Nt = Ncystic+Nreticular 
be the total number of sample vectors available. Un- 
der the condition that the confidence level is at least 
(1 - a), we can obtain the following interval for the 
uncertainty in the difference of the mean values of 
the ith feature: 

where a' = " and w,,, is the ith diagonal element of 
2~ 

W (defined in the previous section) and t ~ , - a ( a ' )  is 
the student t-distribution with Nt -2 degrees of free- 
dom. The size of this uncertainty interval is given 
by Ri - L;. Evidently, when the second term in Eq. 
7 is zero, there is no uncertainty in the difference of 
the mean values for feature i since Li becomes equal 
to R,. By the same token, when the second term in 
Eq. 7 is greater than the first, the uncertainty domi- 



nates, making such a feature unreliable. The weight 
given to such a feature is zero. We only compute the 
weight for a feature if the second term of Eq. 7 is 
less than the first term for that feature. 

The quality of the ith feature for discriminat- 
ing between the categories Gcystic and Greticulnr can 
now be measured by the following h fact,or: 

These quality factors can be computed for the ith 
feature for every pairing of Gcystic with the other 
categories. Subsequently, the quality fact,ors can be 
combined into a single weight for the ith feature: 

All such weights computed for the different feature 
components in this example are denoted by a vec- 
tor of weights called Wcystic for this particular ex- 
ample. In general, for perceptual category g ,  this 
vector would be denoted Wg.  

5 Experiments 

We will present below some of our experiments 
with the two sets of features described previously. 
We used the general purpose features to validate 
the assumption that local features lead to signifi- 
cantly better retrieval results than global features. 
We also designed an experiment to compare the re- 
trieval precision obtained when using the perceptual 
categories features against that when using the gen- 
eral features. 

5.1 Local versus Global attributes 

Table 1 shows for each disease category in our 
database the total number of queries for the cate- 
gory, the mean and standard deviation of the num- 
ber of the four highest ranking images that shared 
the same diagnoses as the query image, and per- 
centage of the four retrieved images that have the 
same diagnoses as the query image. To assess the 
importance of local features versus global we used 
two different sets of attributes. The first is a com- 
bination of attributes extracted from the PBR re- 
gion ( R I ( P ) )  and attributes contrasting the PBR to 
the rest of the lung region (C). The second set of 
attributes (R2(G))  was customized to a global ap- 
proach to image characterization and were chosen by 
the SFS algorithm when optimizing performance for 
the entire lung region. We used the nearest-neighbor 
retrieval method after removing from the database 
the query-patient images. 

5.2 Precision based on perceptual and 
disease categories 

For this experiment, our database contained 610 
PBRs from 314 HRCT lung images. We have two 
kinds of e~periment~al results to report. The first, 
i l l~strat~ed by Fig. 6, shows the retrieval precision 
with respect to just t8he perceptual categories. This 
experiment consists of the following steps: 1) Ran- 
domly select an image from t,he database as a query 
image; 2) Ask the system t,o ret,rieve four most sim- 
ilar images from the dat,abase taking into account 
t,he feature weights discussed in Section 4.7 for the 
different perceptual categories; and 3) Compare the 
perceptual category of the PBRs in the query image 
with the perceptual categories of the PBR.s in the 
retrieved images. (Therefore, for these experiments 
we do not pay any attention to the disease labels 
associated with the PBRs.) 

The retrieval precision taking into account the 
disease labels of the PBRs shown in Fig. 7. The 
steps that constitmute this experiment are similar to 
those described above, except for the following three 
differences: 1) the retrieval precision is conlputed 
on the basis of the disease label of the query image 
vis-a-vis the disease labels of the retrieved images; 
2) the image similarity metric is computed directly 
from the weight vectors for i = 1,2,.., 9 for the 
nine perceptual categories (these vectors were de- 
fined at the end of Section 4.7); and 3) the image 
similarity metric takes into account the fact that in 
the database the distribution of the PBRs with re- 
spect to the perceptual categories is not uniform by 
associating the following weight with each percep- 
tual category: 

where Ni is the number of PBRs in the training data 
for perceptual category i. 

On the average, using perceptual categories for 
retrieval in the manner described here resulted in 
improving the precision rates from 71.77% to 77.60% 
over the traditional method mentioned in section 3. 
Note that three out of the twelve disease categories 
experienced reduced precision with perceptual cate- 
gories. We believe the problems are caused by the 
fact that for some of these diseases, such as panaci- 
nar (PA), the number of entries in the database is 
small compared to t,he entries for another disease, 
such as centrilobular emphysema (CLE). 

6 Hierarchical Retrieval 

One of the important problems in content-based 
image retrieval is the selection of the retrieval 



PSE: 
BO: 
HE: 

Table 1: Comparison of localized versus global attributes. 

MC: 
PA: 
PCP: 

Percent of Total 
R I ( P )  + C I R2(G) 

73 1 53 

Precision based on perceptual categories Precision based on disease categories 

Correct Retrievals 
R1 ( P )  + C I R2 (G)  
2.92 f 0.18 1 2.12 f 0.85 

Diagnosis 
CLE: 

S A: 

L ~ n r a r  R c u ~ u l n r  S-n~dulc R n d u k  tlwh LAW C ) * l r  ( X i  Crl CLE P\F I , \  IPF LCI A \ P  l3R 3lC ALP I l l -  \ A  PCP 

Query 
Images 

168 

16 1 2.76 f 0.71 1 1.96 & 0.75 11  69 1 49 

Perceptual categories Disease categories 

Total DB I 302 1 2.89 f 0.36 1 2.14 f 0.82 11  72.3 1 53.6 

Figure 6: Retrieval precision based on perceptual cat- Figure 7: Retrieval precision based on disease cote- 
egories. gories. 

method. In medical imaging it is often the case that 
each image belongs to a major class (disease) but 
images within each class can vary widely with re- 
spect to visual similarity (because of the severity of 
the disease). Thus, by first classifying the query im- 
age to a disease according to a set of features, and 
then retrieving the most similar images to the query 
image using the same set of features might not yield 
the most desirable results. This is because the fea- 
tures that differentiate among diseases might not be 
the most effective in retrieving visually similar im- 
ages within a class. 

For this purpose the Customized Queries A p  
proach (CQA) was developed ([22, 11). CQA works 
a t  two levels: first it finds the features that discrimi- 
nate the major classes, and then it "customizes" the 
query by using the specialized set of features in the 
query's class to obtain the best n images. In order 
to find the set of features for the first level, the al- 
gorithm employs SFS ([13]). Finding the best set of 
features within each class is an unsupervised feature 
selection problem, and CQA resolves it by perform- 
ing clustering and feature selection simultaneously. 

More specifically, the basic idea is to search 
through feature subset space, evaluating each sub- 
set, Ft, by first clustering in space Ft using the EM 
[8] algorithm and then evaluating the resulting clus- 
ter using a chosen clustering criterion. The result 
of this search is the feature subset that optimizes 
the criterion function. Because there are 2" feature 
subsets, where n is the number of available features, 
exhaustive search is impossible. To search the fea- 
tures, sequential forward search can be used [9], i.e. 
each time we add the feature that when combined 
with the current chosen set yields the largest im- 
provement with respect to a separability criterion. 
For more details the reader is referred to [22] and 

PI. 

Table 2 contains some comparative results be- 
tween CQA and the traditional method, i.e. us- 
ing the same features in all levels. SA stands for 
Strongly Agree, A stands for Agree, NS for Not Sure, 
D for Disagree and SD for Strongly Disagree. 



Table 2: Experzmental results for Customized Queries. 

7 Relevance Feedback 

Disease 
Class 
CE 
PE 
IPF 
EG 
Sar. 
Asper. 
Bron. 
Total 

A retrieval system with relevance feedback 
prompts the user for feedback on retrieval results 
and then utilizes this feedback on subsequent re- 
trievals in order to increase the retrieval perfor- 
mance. A popular approach in this area has been to 
use a weighted k nearest neighbors retrieval, where 
the weights are determined by a function of the 
user feedback. Systems that employ this strategy 
are MARS [16] and Probabilistic Feature Relevance 
Learning (PFRL) [19]. In MARS a feature's weight 
is determined by examining the feature's variance 
across the set of retrieved images marked as rele- 
vant by the user. In PFRL a feature's weight is 
computed by examining the k marked images clos- 
est to  the query with respect to only that feature. 

The relevance feedback mechanism of ASSERT, 
called Relevance Feedback Decision Trees (RFDT), 
was introduced in [23]. This work casts relevance 
feedback as a classification problem between the two 
classes relevant and irrelevant and relies on machine 
learning techniques to solve the problem efficiently. 
It operates as follows: on the first iteration, no feed- 
back information exists, so the retriever performs an 
unweighted k nearest neighbors retrieval. The user 
then marks the k retrieved images as relevant or ir- 
relevant as he or she sees fit. The query image is 
marked automatically relevant. This feedback is re- 
layed back to the system and the second iteration 
begins. Now the k + 1 images are viewed as training 
data belonging to the classes relevant and irrelevant 
and a decision tree is induced using C4.5 [20]. Once 
the tree is formed, it is used to select the next set of 
k images to present to the user. To this end, the en- 
tire database of feature vectors is classified via the 
learned tree, and the images classified as relevant 
are assembled in a list. From this list, the k images 
closest to the query image are returned using k near- 
est neighbors retrieval. The graphs in Fig. 7 show 
the performance of RFDT against PFRL. For more 
information the reader is referred to [23]. 

8 Summary 

Content based image retrieval has become an im- 
portant area in computer vision. Much has been 
accomplished, but much more remains to be done. 
In this paper, we have highlighted some of the prob- 
lems unique to automated retrieval from large medi- 
cal image databases and presented solutions to some 
of them in the specific context of HRCT images of 
the lung. 
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