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Abstract 

A new method for object search is proposed. The 
proposed scheme is based on matching gradient in- 
formation around each pixel, computed in the form 
of orientation codes, rather than the gray levels di- 
rectly and is robust against irregularities occurring 
in the real world scenes. A probabilistic model 
for robust matching is given and verified by real 
image data. Experimental results for real world 
scenes demonstrate the effectiveness of the proposed 
method for object search in the presence of different 
potential causes of mismatches. 

1 Introduction 

Template matching is considered as one of the 
most powerful ways to search objects, for which we 
have many algorithms, programs and real systems 
for many applications. Many theoretical and prac- 
tical approaches have been proposed such as tem- 
plate matching using half-tone images directly as  a 
model [I, 2,3], feature based approaches like Hough 
transforms which utilize edge pixels or lines as ba- 
sic feature [4, 5, 61, or appearance based approaches 
like stochastic subspace matching using covariance 
information [7]. 

Conventional template matching techniques like 
correlation coefficient (CC) and sum of squared dif- 
ference (SSD) are largely dependent on the bright- 
ness of the model and object image pixels 181. CC is 
useful for avoiding the mismatch due to variations 
of illumination over the whole image, but partial oc- 
clusion, partial shading, background variations, tar- 
get deformation or any combination of these irregu- 
larities cause misregistration. Matching using only 
the gradient magnitude can also give good results 
in cases of such irregularities if the brightness pat- 
terns differ by a constant factor, but the non-linear 
nature of the brightness variation can cause the gra- 
dient magnitude to vary as well, especially in cases of 
heavy shading or too bright highlighting. Gradient 
orientation information is by far the most invariant 
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feature in such cases as the difference of only a few 
gray levels among the neighbouring pixels can retain 
the orientation information. 

Application of gradient information has been 
noted previously in tasks like finding dominant ori- 
entation [9] and gesture recognition [lo]. Gradient 
information along with a relative distance informa- 
tion has been demonstrated to have good results in 
rotation invariant object recognition by constituting 
orientation tokens which are then used in the form 
of co-occurrence matrices [ll]. In a recent paper it 
has been shown that the matching can be made ro- 
bust by using only difference or tendency of adjacent 
pixel brightness values rather than their actual val- 
ues [12]. This can be a useful example to show that 
it is effective and feasible to utilize not only bright- 
ness itself but also the accompanying information for 
object search. 

In this paper we propose a technique, called Ori- 
entation Code Matching (OCM), for searching half- 
tone images by utilizing gradient information in the 
form of orientation codes which are mat,ched opt,i- 
mally for realizing robustness [13, 141. Orientation 
codes are generated by quantizing the angle corre- 
sponding to the steepest ascent orientation at each 
pixel. These codes, rather than brightness values di- 
rectly, are utilized to find the object of interest. The 
proposed scheme has the advantage of being robust 
to abnormal brightness variations like highlighting 
or shadowing and/or variations of background. The 
algorithm is simple and can be implemented effi- 
ciently in real time systems. 

Section 2 formalizes OCM and analyzes robust- 
ness of a similarity measure. Experimental results 
for real images are given in Section 3. We conclude 
the paper with some comments in Section 4. 

2 Orientation code matching 

2.1 Orientation code 

In the OCM scheme, orientation code representa- 
tions for an object image from the scene and the tem- 
plate are constructed from the corresponding gray 
images such that each pixel represents an orienta- 



2.2 Similarity measure 

Figure 1: 16 Orientation codes (Ae = :). 

A similarity measure based on the definition of 
orientation codes is designed to evaluate difference 
between any two images of the same size. The best 
match between orientation code images of the tem- 
plate T and any object image I from the scene is 
searched by minimizing the summation of error func- 
tions as follows: 

tion code which is obtained by quantizing the orien- where O I , , ~  and OT are the orientation code irriages 
tation angle a t  the corresponding pixel position in of the subimage at (m, n )  and the template respec- 

the gray image. The orientation angle here refers to tively, M is the size of the template and d( . )  is the 

the angle indicating the steepest ascent orientation error function based on absolute difference criterion 

evaluated from the pixel neighborhoods, measured 
min{la - bl, N - la - bl):la - bl < N 

with respect to the horizontal axis. The orientation d(a, b) = 
codes thus obtained are a function of the texture and 2 : otherwise 

shape of the object and hence essentially invariant 
to object translation and the effects of shading and 
background and illumination variations. 

Suppose an analog image is represented by I (x ,  y) 
and its horizontal and vertical derivatives as VI, = 

and VI, = $$, respectively. For the discrete ver- 
sion of the image, they are evaluated around a pixel 
position (i, j), and the orientation angle Oi , ,  is com- 
puted as OiTj  = tan-'(VI,/VI,). Since the numeri- 
cal value of tan-' function is confined to [y , T I ,  the 
actual orientation is determined after checking signs 
of the derivatives, thus making the range of 6 to be 
[O, 2 ~ 1 .  The orientation code is obtained by quan- 
tizing O i j  into N (= 2x/Ae) levels with a constant 
width As. Pixels with low contrast neighborhoods 
are sensitive to noise and hence designated by a sep- 
arate code. 

C. . = 
z>3 L : otherwise 

(1) 

where I? is a pre-specified threshold level for ignoring 
the low contrast pixels and L is a large value which is 
assigned as a code for them. An example of the ori- 
entation codes is depicted in Figure 1 corresponding 
to the quantization width of A0 = ~ / 8 .  

We used the Sobel kernels for gradient angle com- 
putation because they are computationally efficient 
and are less sensitivity to additive noise because of 
the averaging of several pixels in the neighbourhood. 
In our setup we used 16 orientation codes corre- 
sponding to a resolution of g. The threshold level I? 
was set to 10 as a tentative value but can be mod- 
ified according to the nature of problem. L was set 
to 255 which is the maximum possible value for &bit 
representation of orientation codes. 

where Em,, is the maximum possible error value 
between any two pixels. 

When a comparison is performed between a pixel 
having an orientation code evaluated by the tan-' 
function and the one whose code was set to L due 
to low contrast neighbourhood, the error cannot be 
computed by finding the difference. In order to avoid 
such an inconsistent comparison. we need t,o assign a 
reasonable value to the error function corresponding 
to such pixels. The assigned value should be such 
that it does not bias the similarity evaluat,ion for t,he 
subimage. For such cases, we assigned the value of 
% to error function. This is the expected error 
value as explained later in 2.3. A large value for 
L is helpful for discriminating such an incompatible 
comparison. 

Since the orientation codes are cyclic in nature, 
the absolute difference is not used directly for com- 
puting the error function, rather the minimurri dis- 
tance between the two codes is determined. As a 
consequence of this cyclic property of orientation 
codes, the maximum distance between any two codes 
is never more than which is assigned to Em,,. 

2.3 Robustness of similarity measure 

In this section we provide a theoretical c.onsid- 
eration of characteristics of the measure of similar- 
ity evaluation around any position where an object, 
of interest is occluded by some other object. The 
analysis is based on a stochastic modeling of incon- 
sistency between uncorrelated brightness of images, 
resulting in invariability of the measure proposed. 

Suppose we have the fraction of occlusion repre- 
sented by an occlusion rate ,B (0 5 ,B 5 l), then 
S can be separated into region of occlusion I. and 



non-occlusion II- ,  in the target subimage as follows: 

S1-, is the fraction of the total S evaluated over the 
region of non-occlusion, while Sp is the one evalu- 
ated over the occluded region. We omit the sub- 
script (m, n) for simplicity. For Sl-o, we can expect 
a reasonable low value since the two partial images 
corresponding to  the unoccluded region should be 
similar to each other. The main issue here is the 
analysis of Sp. It can be expressed as 

Here EI, (d) refers to  the expected value of d over 1,. 
The difference d(Or(i, j) ,OT(i,  j)) has the supre- 
mum N/2 as mentioned earlier in 2.2. From a sta- 
tistical reasonable assumption, in any occluded re- 
gion, occluding objects have no relationship with the 
occluded objects and hence there is no correlation 
between Or (i, j) and O T ( ~ ,  j). This makes the dif- 
ference d(OI (i, j), OT(i, j)) to distribute uniformly, 
and the mean of this distribution is expected to be 
the constant N/4. Then the value So can be rep- 
resented as So = PN/4. This invariability of So 
is very important to estimate the total value S for 
OCM. It is obtained as 

In general, according to this formalization, we can 
expect the same variation of S as that of S1-o 
which represents the property evaluated over any 
non-occluded part. This is the main reason that we 
can obtain much more robustness of OCM than some 
existing similarity measures. By using the above 
mentioned relation, an upper limit of occlusion rate 
/3 can be estimated as p 5 where T is 
a threshold value for verification of matching; for 
example, in the case that N = 16, T = 3.5 and 
S1-, = 1.5, we can obtain the relation /3 5 0.5 which 
means any object image with an occluded region of 
up to 50% area of the whole size can be searched 
if similarity values for unmatched images are more 
than the threshold value T = 3.5. 

Figure 2 shows example images adopted in ver- 
ification experiments for our robustness analysis of 

(a) Unoccluded Object (b) Occluded Subimage 

Figure 2: Object and its occlud~d version. 

(a) Occluded Region (b) Unoccluded Region 

Figure 3: Distribution of error values. 

OCM. 2(a) and (b) show an object image and its . . - 
occluded version. For our experiments N = 16 and 
Em,, = 8. Figures 3(a) and (b) show the dist,ri- 
bution of all the error values over the occluded and 
unoccluded regions respectively. Frequency of t,he 
error values corresponding to $! is highest in bot,h 
the images. It is due t,o the cont,ribut.ion of c>rl.or. 
values assigned to the low contrast pixels. This con- 
tribution is shown by the darker bars on the same 
plots. The histogram profile of the computed error 
values for the occluded region, shown in Figure 3(a), 
can be observed to be similar to a uniform dist,ribu- 
tion which is introduced in the above formalization. 
On the other hand, Figure 3(b) shows the error dis- 
tribution in the unoccluded (normal) region and the 
profile is different from the one of the occluded re- 
gion shown in Figure 3(a) and has distinct peaks 
near 0 and 1 levels. 

The image is of size 58 x 68 and consequently 3696 
pixels without peripheral pixels, and it involves the 
occluded area of around 1980 pixels, which const,i- 
tutes about 53.6% of the total subimage region. The 
total accumulated error for the occluded region is 
7833, and the mean is 3.96 which is almost the same 
as the expected value = 4. 

There are other similarity measures which are not 
robust because the similarity values over any oc- 
cluded regions can not be estimated easily. For ex- 
ample, CC is a product-based correlation measure 
which makes it difficult to predict the correlation 
values in the occluded regions. SSD, on the other 
hand, is expected to have similar characteristics to 
OCM, but the range of difference in bright,riess is 
much wider than the one of orientation codes. 



Table 1: Performance comparison 

I 0s Windows 2000 

\ I  . 

(b) Comparative results 
Figure 4: Comparative results for highlighted image. I Method I Successes I Success rate I comn time I 

Total no. of images 
Image size 

Template size 
Image type 

Camera 
CPU 

150 
240 x 320 
68 x 58 

8-bit gray scale 
Victor GR-DVL7 digital video 

AMD-KG 400MHz 

SSD 
CC 

3 Experimental results 

cc (L) 
OCM 

Table 1 shows a summary of the setup and results 
for the experiments carried out to  check the effec- 

13 
5 1 

tiveness of the proposed method on a set of images. 
For this setup, a toy "Winnie the Pooh" was selected 
as the object of interest whose template image was 
taken separately. Various test images were prepared 
in which the toy appears in different conditions of 
shading, differing background, occlusion and their 
different combinations. We compared the results ob- 
tained from OCM with CC, SSD and CC(L). CC(L) 
here is the correlation coefficient based matching ap- 
plied t o  the corresponding edge features obtained by 
using the Laplacian operator. Success means the 
best match is the same as the ground truths. OCM 
had the maximum number of successful matches fol- 
lowed by CC(L). This demonstrates the effectiveness 
of matching using only the gradient information or 
edge features rather than the brightness directly, es- 
pecially in presence of real world irregularities. 

Robustness of different matching schemes under 
various situations was checked using the images hav- 
ing some disturbances and irregularities. Images 
from the set used for comparison in Table 1 as well as 
other images were used in these experiments1 . We 
categorize the experiments according to the nature 
of problem as below. 

114 
140 

3.1 Highlighting 

8.1% 
34.0% 

A small part of a CD jacket was taken as a tem- 
plate and the true position in the scene is under high- 

Images used in the experiments and the setup described 
earlier are available at: 
http://mee.coin.eng.hokudai.ac.jp/open-pub/farhan/ 
images.htm 

27.2 sec 
58.8 sec 

76.0% 
93.3% 

Figure 5: Comparative results for test image with back- 
ground shift and shading condition. 

54.8 sec 
39.2 sec 

lighting as shown in Figure 4(a). Results by using 
CC, SSD, CC(L) and OCM are marked with boxcls 
around the best match position for each ~riethod. 
As shown, OCM and CC(L) were able to  locate the 
true position whereas mismatching occurrecl i r ~  c.asc,s 
of CC and SSD. This experiment demonst,rat,rs the 
fundamental effectiveness of OCM Tor large pertur- 
bation in brightness caused by illumination change. 
CC(L) is also robust in this situation. 

3.2 Shading and background shift 

Figure 5 shows an example image in which the ob- 
ject appears in different background cornpar ~ t l  wit 11 

the template image and a t  the same time under pat- 
tial shading. Only OCM was able to detect the ob- 
ject despite the disturbance occurring around the 
object. 

3.3 Occlusion 

Figure 6 shows the matching results from the four 
methods in the situation where the object is partially 
occluded by some other object. OCM could locate 
the object while the true position of the object was 
ranked a t  45064th, 2504th and 25th in order of best 
match by using SSD, CC and CC(L) respectively. 



utilizing the sampling scheme proposed by [I] for 
faster registration. 
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