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Abstract

Reliable curve matching is a difficult problem but is
required in many vision-based applications. It is par-
ticularly difficult when the edges in question are not
limited to be on straight lines. Our main contribution
in this paper is to propose a new algorithm for curve
matching (including lines). The method is described
within a probabilistic relaxation framework. Novel
similarity-invariant unary and binary measurements
suitable for curves are developed. and an additional
measurement is introduced to model the uncertainty
of the binary measurements, which is very important
in computing the matching support from neighboring
matches. Experiments with complex real scenes show
that the rate of correct matching is higher than 98%.

1 Introduction

Information that can be used for curve matching
falls into three categories, i.e., the geometrical con-
straint, the similarity between the curves, and the
compatibility among the neighborhood matches. The
most important geometric constraint between views
is the epipolar constraint, which has been used in all
curve-based stereo matching algorithims to reduce the
search space. An early example exploiting this con-
straint was the PMF method [1, 2], where the epipo-
lar lines are horizontal scan lines. The technique de-
scribed in [3] also uses this constraint, but does not
restrict the epipolar lines to be horizontal (the funda-
mental matrix is used to define the epipolar geometry).

The similarity function between two curves is usu-
ally defined in a high dimensional feature space. The
features may include attributes such as the intensity
in the neighborhood [3], orientation [4], and the local
shape characteristics [5]. These are the unary mea-
surements.

The compatibility function among neighboring
matches is usually defined by the relationship between
neighboring pairs of matches. The compatibility func-
tion is usually related to the local affinity or similarity
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assumption, and the binary measuremnents, defining
the relationship, could be the angle and distance be-
tween a pair of neighboring curves [6, 7]. Relaxation
techniques [8. 7] are useful methods that integrate the
similarity function and the compatibility function to
progressively reduce the matching ambiguity.

The goal of this paper is to attack the curve match-
ing problem. Curves include both straight and non-
straight edges. Many techniques exist for detecting
edges. We detect edge points in sub-pixel accuracy
by finding the zero-crossing between the integer pixels
on the DOG (difference of Gaussian) image. Adjacent
edge points are then linked together into connected
edge chains (also called curves for simplicity). The
linking process does not include any heuristic process-
ing such as one-pixel gap filling or straight line fitting,
An edge chain (curve) C(s) is represented as a linked
list. and is parameterized by the index variable s.

Techniques for line matching have been successfully
applied to scenes containing mainly planar surfaces [3].
These techniques, however, have two fundamental dif-
ficulties when applied to more general scenes. First,
they are not suitable for scenes containing curves be-
cause the line model is insufficient to describe curves.
Second, they are not suitable for scenes that are taken
by a camera closed to the scene. where the local affin-
ity or similarity assumption for long line segments is
no more valid. Furthermore, the projection of straight
lines in 3D onto images may not be straight anymore
due to radial lens distortion.

Two central problems related to curve matching are
the design of good unary and binary measurements,
and the definition of appropriate similarity and com-
patibility functions. Previous work on curve matching
such as (2, 9] gave good examples on the unary mea-
surements and similarity function between curves, but
were weak when dealing with binary measurements
and compatibility functions. Indeed. their compati-
bility functions were usually computed from measure-



ments such as disparity [5] or disparity gradient [2].
which are only suitable for the description of relation-
ships between two pairs of points, and are not scale
invariant. Another important issue to be considered
is the uncertainty in the binary measurements. Obvi-
ously. the local affinity or similarity assumption is only
valid within a limited area of the image. Binary mea-
surements obtained from curves far away from each
other have more uncertainty than those from nearby
curves. This should be reflected in the computation
of the compatibility function.

In this paper. we develop a curved-edge matching
algorithm within a probabilistic relaxation framework
similar to that in [7]. The framework described in [7]
only deals with straight line segments. We adapt the
framework to deal with curves and explicitly model
the uncertainty in the binary measurements. Epipo-
lar geometry is used to reduce the matching ambi-
guity. A piecewise linear model is used to approxi-
mate a curve with line segments. A set of binary mea-
surements for line segments are proposed. which are
similarity-invariant and measured in the same physi-
cal space. They are then integrated to provide a set
of binary measurements and a compatibility function
for the complete curve. A similarity-invariant unary
measurement is also proposed.

1.1

Curve matching is modeled as a labeling problem
from the object space (left image) to the model space
(right image). There are N curves in the left image.
and M in the right. The curves in the left image form
the object space, denoted by A = {a;y..... ay}. The
curves in the right image form the model space. each
labeled as w;. We wish to match the object to the
model. We therefore assign to each object a; a label
#;. which may take as its value any of the M +1 model
labels that form the set Q = {wp.wy...., war}. where
wp is the null label used to label curves for which no
match in the right image is appropriate.

Four sets of indices are defined for convenience as

Notation

Ny = {1’\'} N, = {_} | j € No.j # L} My =
10::27554 M}, and M, = {j | j € My.j # i}. The unary
measurement set is defined as X' = {x, | i € Ny},

where x, is the unary measurement vector for the ob-
ject a;. Unary measurements include intensity sim-
ilarity. and will be addressed in section 2. The bi-
nary measurement set for the object a; is defined as
A; = {A;; | j € N;}. where A,; is the vector of binary
measurements between objects a; and a;. Binary mea-
surements include distance between two curves, and
will be addressed in section 3. A special measurement
set B; = {B,; | j € N;} is also defined. where B, is
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the uncertainty measurement to be defined later. To
follow the traditional notation. we will use the upper-
case P to denote the probability of an event. the lower-
case p to denote the probability density function, and
Ny (1, E) to denote the Gaussian probability density
function of a random vector v with the mean p and
the covariance matrix .
1.2 A framework with uncertainty mea-
surement

With the above notation. the matching problem be-
comes that of finding for object a; a model label wy,
with the highest probability given the measurements

X, A;. and B;:

P(#, = Wy, ]X?Al'.B!)
max P(6; = wy | X. A;. B;)
wyEN

(1)

For the convenience of the discussion that follows.
we introduce the notation of the event set

L= {0 =w}| 6 =ws, | j € N}

to indicate that object a; is labeled with a given label
wy while other objects can change their labels. Obvi-
ously. for £%. the ith event ﬁf' is equivalent to event
0; = wp,. Using Bayes' formula and the theorem of
total probability. we have

p(L% | X, A B)
p{ﬁf'.X.A,.Es)
p(X. A B,)
E{w_‘eﬂ._:'e.\'.}p(’sg' X AL B)
2oen Z{w,‘J cajeny PILA X AL B))

(2)

By applying the product rule for p(£*. X, A;.B;), we
have
p(L X, A, B))
= p(X| L AL B)R(LY, AL B;)
= p(X | LYYp(A: | £, Bi)p(L. Bi)
p(X | LY)P(L )p(Ai | £, B.)p(B,)
P(LY | X)p(A; | L2, Bi)p(X)p(B;)

(3)

where the second equation holds because A" (unary
measurement set) does not depend on A; (binary mea-
surement set) and B, (uncertainty of the binary mea-
surement set), and the third equation holds because
L* and B; are independent. Sinuce there is no knowl-
edge about A and B;, p(X') and p(B,) are constants.
Substituting (3) into (2). we then have

P(LY | X. A,.B;) =



P(L% | X)p(Ai | £%.B))

3

{we, €, jEN;}

Y. X

wyEN {..:arJ €QJEN}

4
P(L* | X)p(A; | £, B)) @

Assuming that the events in the £* are independent,
we have

P(L* ) X)
= P =w|xi) [] PO; =ws, | x;)

JEN;

Since A,; only depends on the ith and jth events in
£* and B,;, and since A;s are independent from each
other, we have

p(Ai | £2.B))

= H P(Aj | 6i = wa.0; = wy,.By;)
JEN;

With the following simple notation

P =
J
P(0; = wp, | x;)p(Aij | 0 = wy,0; = ws;. Byj)

we then have

2

{:-.'»J ENJEN:}

P =wx|x) Y P}-- Y P}

wey €Q we, EQ

P@:=wr|x) [[ X P}

JEN, we €N

P(L* | X)p(A; | £, B;)

Substituting (5) into (4) leads immediately to
P(el = Wy, | X?AI:BR)

P(0; = wyp, | x;)Q(8; = ws,)
Yowren P60 = wy | x:)Q(0; = wy)

where the support function is given by

Qli=wa) =] X P}

JEN; wa€N

= ] X P@;=ws|x)

JEN, wy€fl
p(A.J‘ | 9, = wn.ﬂj = ug.B,_,-)

(6)

(7)

where the first item in the summation is the similarity
function, and the second is the compatibility function
that takes into account explicitly the uncertainty mea-
surement B,;.
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Based on (6), we update the labeling probability in
a relaxation scheme according to the following itera-
tive equation

P{n+1}(9' — UH.-)
P (6, = wp,) Q™ (6; = ws,)
Zh.',\Eﬂ P{“}[el = UA]QIH){BI = u,\)

(8)

where 7 is the iteration number, and P'°/(8, = wy,) =
P(#; = wy, | x;). The iteration process terminates if
the change in the probabilities is less than a predefined
small value or the maximum number of iterations is
reached. The reader is referred to (7, 10, 8] for more
details.

As has been mentioned in section 1, candidate
curves in the right view for the current curve a; in the
left view are found by the epipolar geometry. This
is equivalent to reducing the model label set for a;
from Q to ; in the above derivations. Since the size
of Q; is usually much smaller than that of Q, we in-
crease considerably the computational efficiency of the
relaxation process.

1.3 Adapted framework with combined
measurements

In our case, the unary and binary measurements de-
pend on information in both object and model space
(i.e.. left and right image). Therefore, we should con-
sider measurements for combined object-model pairs.
Let xf“’{u € M) be the combined unary measure-
went defined for the pair of the ith object and the
ath model. The unary measurement of object a;, x;,
is then itself a set of combined unary measurements,
ie. {x!*) | a € M} Let Alf”(a € My, € My)
be the combined binary measurement defined for two
object-model pairs (i.a) and (j. 7). Then, the binary
measurement A,; is itself a set of combined binary
measurements. i.e., {Agj“‘ﬂ | @ € My.3 € My}

In order to adapt the framework for working with
the combined measurements, consider the similarity
function in (7) first. Since the event #; = wg does not
depend on the combined unary measurements other

than the xleJ

;. we have

P(8; =ws | (x| B € Mo}) = P(6; =ws | )
(9)
Similarly. Ai?d]'s are independent of each other, and
we have

P(Atj | 6; = wo-.gj = wg. B;j)
= p({AY"} )6 = wa.8; = wy,By))



= (k1)
= H P(AU 'HI:L‘JO'BJ :UﬂfBlJ)
ke "lfo
1€ Mo
For A:f” which are not equal to Ai;"j] (i.e.. k and {
are not matched with 7 and j), there is no information
about how to compute the binary measurement Ai_f”.
Hence, we assume the density function to be a uniform
distribution, i.e., a constant. within its domain. In
consequence, we have
P(Aij | 6 = wa. 8 = wg,Byj)
(a3)
=G JJ{AU [0a:Wn-B}:W33B:J) (10)

where {Aff”} is the abbreviation of {Ai:” | k €
My.l € My}, and € = H{u#as}l’(AEf” | B;;) is a
constant. By substituting (10) and (9) into (7), (7)
into (6). and eliminating the constant e. (6) can be
rewritten as
P(E: = W, l ‘Y-.AnBa)
P(8; = wa, | x,")Q(8: = wa,)

= (11)
Lorea Plli=wx| XPJ)Q(gs = wy)
and (7) as
QW =ws)= [ 3. P*
JEN; wgEN
= I 3 P=ws|x?)

JEN, ws€Q
p(AEjnd] |9, =Wn-.9_;=‘~‘x3-Bl.r} {12}

2 The combined unary measurement

and the similarity function

In this section. a combined unary measurement in-
variant to similarity (scaled Euclidean) transformation
is developed and the similarity function is computed
based on it. This part of the algorithm is similar to
the PMF [2] algorithmn. However, a major change has
been made to ensure that the score computation is less
sensitive to the image transformation. as we detail be-
low.
2.1 Seed score and curve score

Referring to Fig. 1. the seed score is computed
as the correlation between these two corresponding
neighborhoods, and is given by

o (4(€) = I(kp)] Ir(n) = T(z)]
Sthuidr) = ) No o, ) oty
Ee N(kp)
n € N(lg)

(13)
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Figure 1: The neighborhood of the seed point in the
left image and its correspondence in the right image

where I,(i) is the intensity value on a point « in the
ith image. N(x) is the neighborhood for seed point
. 7 is a point in the second image corresponding to
point & in the first image according to the similarity
transformation that can be computed from the pair of
matched points [11]. and N,, is the number of points in
the neighborhood. The details of computing the mean
(I(x)) and the standard deviation (o(x)) in N(x) can
be found in [12]. It is obvious that the correlation
score thus computed is invariant under the similarity
transformation,

The curve score L(if.jr) for the ith curve in the
left image and the jth curve in the right image, which
is the combined unary measurement in our context, is
the average of all possible seed scores. That is,

. 1
L(i.jR) =5 2
T kg € Sdiig)
Ir € Sd(jr)

S(ke.lr)  (14)

where N, is total number of seed points on ip. and
Sd(iy) and Sd(jgr) are the seed point sets of the left
and right curves. respectively.
2.2 Similarity function

We can now compute the similarity function. The
combined unary measurement xfm in (11) is a scalar
;rfn]. It is equal
According to Bayes’

in our case. and will be denoted by
to L(#,.w,) computed above.
theorem, we have

P(6; =wa | £}™)
pla) — - =
- pl, ]‘E,] S wﬁ)P(G,‘_ Wa) (15)
e Pl | 8, = wa)P(8; = w,)

where P(f;, = wy) is the prior probability equal to
a prefixed value ¢ if A = 0 (i.e., no match). and
to (1 — ()/My otherwise. We assume that p(;c&'\} |
8, = wy) = N{u.oy). The value of j; and o, can be
computed from the histogram of .urtf}\J using the initial
matches. The initial matches could be obtained by se-
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Figure 2: Configuration of two pairs of line segments
in both images

lecting only the labeling with ;c{.‘\} that is the highest
in both {xEm | 3 € My} and {;cE:]’ | 7 € No}.

The unary measurements are used in (15) to com-
pute P(8; = w, | 2\*'). It is then used to initialize the
relaxation scheme, that is: P9 (8 = w,) = P, =
Wa | ;r:a'}}.

It is interesting to note that since our unary mea-
surement is similarity invariant, there is no need to
introduce a motion related term as in [7] for the com-
putation of the similarity function.

3 The combined binary measurement
and the compatibility function
A set of combined binary measurements for the
line segments is proposed. These measurements are
grouped together in an optimal way to form the com-
bined binary measurements for curves. The compati-
bility function for curves can then be computed. The
uncertainty measurements for the combined binary
measurements are also given in this section.
3.1 Combined binary measurements for
line segments
As we mentioned before, the similarity transforia-
tion is a reasonable mapping from a neighborhood in
one image to the corresponding neighborhood in the
other. Consider two pairs of line segments illustrated
in Fig. 2. The similarity transformation x' = sRgx+t
can be computed from (p;,p}) and (p2.ph). as de-
scribed in [11]. We then compute by = sRyqy + t,
by = sRpqs + t. and form a random vector z as the
follows
2= [viT v v T

(16)

where vi = by — q}. and vs = b; — q}. Ideally,
if the local similarity transformation is valid and the
point coordinates are noise-free, we have z = 0. These
conditions are not satisfied in practice, and we assuime
that the components of z are i.i.d, and have the same
standard deviations o, i.e., z = N;(0,X), where £ =
diag({o}).

3.2 Combined binary measurement for
curves and the compatibility function
Now consider a pair of curves a, and ;. The num-
bers of line segments are k; and k;. respectively. For
each line segment k on the shorter curve, the closest
segment from the other curve is selected, and mea-
surement z; as defined in (16) is computed. The ra-
tionale of choosing the closest line segments is that
the similarity transformation better applies to a small
neighborhood than to a larger one. For the vector set
{z;|j€[li.., K}. where K = min (k;, k;), consider
the following measurement vector
z= (2 +- +(x2k (17)
where (;'s are coeflicients and Zle (e = 1. It is obvi-
ous that Z is also a joint Gaussian with Z = N;(0, ),
where £ = diag[{5}], and

= (lod o4 ook (18)
We then select (; to minimize (18), which yields
K
G=lof) o (19)
J=1

Equation (17) is an unbiased estimate of the measure-
ment error with minimal variance. The compatibility
function is then given by

p[AEfm |6, = h-’a-.gj = w‘g.B,J) =
P{i I BI = wn-g’; = W3, i) = ,'Vi(o, i] (20)

where At;m = z is the combined binary measure-

ments, and B,; = ¥ is the uncertainty measurements.
3.3 The distance between segments and
the standard deviation

The standard deviation ¢ of vector z in (17) should
be a function of the distance d between the line seg-
ments. This is because the local similarity assumption
becomes weaker when d becomes larger. The function
that we use is

2

1)1 =€ 7) +7]

o(d) = (21)

B =
V2
where p = min (W, H), W and H are respectively the
image width and height. 7 is a positive scalar that
controls the range within which the contribution from
neighboring segment is effective, and v = 2r0'/p
where 0" is the desired standard deviation when the
neighboring segment is very close to the segment under
consideration,



Figure 3: Matching results for a nature scene. 305 out
of 310 matches are correctly matched and the rate is
98%. All bad matches are marked with pink arrows
in the images for reader’s convenience.

Figure 4: Matching results for an indoor scene taken
by a camera closed to the scene. 107 out of 108
matches are correctly matched and the rate is above
99%. The bad match is marked with a pink arrow in
the images for reader’s convenience.

4 Experimental results

Fig. 3 is the result for an outdoor scene with many
curves. The program found 310 pairs, 305 of which are
correctly matched. Fig. 4 is the result for an indoor
scene which is taken by a camera close to the scene.
There is a significant perspective distortion between
the left and the right image. The program found 108
matches, and only one is bad. Fig. 5 is another indoor
scene extracted from an INRIA stereo sequence. De-
spite the significant camera motion between the two
views, the program found 110 pairs. and only one is
bad. The overall rate of correct matching is higher
than 98%.
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