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Abstract

In the paper, we propose a vision-based system for
adaptively inferring the interactional intention of a
person coming close to a robot, which plays an tmpor-
tant role in the succeeding stage of human/robot coop-
erative operations typically in production lines. It is
naturally supposed that the interactional intention of a
person induces her action of approaching to the robot
and touching it. Therefore, in our Adaptive Vision-
based Interactional Intention Inference System (AVI-
I1S), the human interactional intention is inferred from
the direction in which the human body is moving and
the trajectory of the human movements. In the pro-
cess, human motion trajectory is generated by traces
of the head movement and interpolated with a cu-
bie Spline approximation technique. Hidden Markov
Model (HMM) is applied as an adaptive noise reduc-
tion filter at the stage of inferring the human interac-
tional intention. The HMM algorithm with a stochas-
tic pattern matching capability is extended to supply
whether or not a person has an intention toward the
robot at any time. Expervmental results demonstrate
the adaptiveness of the inference system using the ex-
tended HMM algorithm that filters out motion devia-
tion over the trajectory.

1 Introduction

In the field of studying human/robot coexistence sys-
tems, total risk analysis reveals that an outsider’s en-
trance to the working volume of a robot possibly leads
to some hazardous situations [1]. Therefore, a robot
is expected to have at least the capability of detecting
the presence of humans around, so that the robot can
prevent such dangerous situations from occurring. As
a little child can understand the objective of the per-
son just by a short time of watching the trajectory
of human movement [2], the use of visual information
processing technology to capture a person entering the
camera view potentially supplies more meaningful in-
formation. We consider having possibility of provid-
ing a robot with the capability to infer if a person
getting close to the robot has intention to operate it
or not. In the study, we define the function of infer-
ring the desire of a person in close vicinity to a robot
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to interact with it as interactional intention inference.
The clues in this case are the sequence of human walk-
ing directions discretized relatively to the orientation
where the robot arm exists. We focus on inferring hu-
man interactional intention because such an inference
function plays an important role that the robot can
exhibit a smooth change in its mechanical impedance
in the succeeding stage of human/robot cooperation
(3].

From the viewpoint that intention inference is at-
tained by evaluating the gap between the resultant
action of the operator and the task goal given to the
system [4], such an inference capability is considered
to be acquired through machine learning processes.
In the study, we regard that the human interactional
intention inference problem is a pattern matching one
from early incomplete data in a human movement tra-
jectory, and that the reliability of the matching func-
tion is enhanced through a learning process of the
robot which is capable of evaluating the above men-
tioned gap.

The general process of the system is shown in Fig-
ure 1. In the following three sections, we will give
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Figure 1: Overview of the AVIIIS



the details on the processes and the experimental re-
sults, excluding the contact force sensing process by
the robot. The reward obtained through an inter-
active process of interacting with the robot can be
judged if any of his/her actual operational force is
detected by the robot. As a result, HMMs function
as an adaptive noise reduction filter for gaining wide
adaptability of the system.

2 The Human Tracking Process

First, human entrance is detected and is modeled by
an ellipse to supply information about the head posi-
tion to implement the tracking capability. Second, cu-
bic Spline approximation technique is used intensively
to approximate the trajectory with reduced control
points in order that the system acquires information
about the human motion direction and the curvature
of the motion trajectory. This information will be
used for intention inference in the next step.

2.1

2D Contour Human Modeling us-
ing Elliptic Matching Technique

Figure 2: Real image and Result of Segmentation and
Elliptic Matching technique

To detect the initial position of the person, the
shape of the head is matched by an ellipse to supply
precise information concerning the position and direc-
tion after the head part image is segmented from the
dynamic scene by the black color. We adopted the
Direct Least Squared Ellipse Matching technique [5].
An experimental result of applying the technique for
the segmented head part is shown in Figure 2.

2.2 Motion Trajectory Interpolation Us-
ing Cubic Spline Approximation Tech-

nique

We use the cubic Spline approximation technique be-
cause of the local effect of control points on the curve.
The succeeding detected positions help to lengthen
the motion trajectory without affecting the whole curve.
Furthermore, this technique maintains the interpo-
lated curve to be C? continuous which still confirms us
to compute motion direction vectors. The cubic para-
metric equation of the curve p(r) = (p.(7),py(7)) =
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ar® + br? + ¢t + d, with 0 < 7 < 1, and parameters
a, b, ¢, and d can be calculated by
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Figure 3: The trajectory by cubic Spline approxima-
tion with reduced control points

Figure 3 shows the result of an interpolated tra-
jectory with reduced control points. At the head pos-
ture A, the person has the intention of operating the
robot. Then, at the head posture B, the curve indi-
cates that she changes her intention and goes outward.

2.3 Calculation of Motion Direction and
Curvature

The motion direction is found by calculating the mo-
tion velocity vector v = (v,,v,,}"" of the first deriva-
tives of p.(t) and p,(t) with respect to time ¢. The
curvature of the trajectory is calculated as

_da
E_d.-;

(2)

where da is the angle (rad.) between the two binor-
mal vectors v(s) and v(s + ds), and ds is the length
of the curve from the initial point. In the study we
assumme that ds in the study is small enough to be ap-
proximated by the distance of a pair of two points in
a sequence, and therefore da is calculated as the angle
between the motion vectors of these two points.

3 Application of HMM to the
AVIIIS

Recently HMM has become widely used for pattern
recognition problems, such as for speech recognition
[6] or human gesture understanding(7] whose patterns
are represented in sequences of events. HMM is one
type of stochastic signal models to describe the ob-
served sequence of probabilistic events and is charac-
terized by states and transitions between states. One
of the powerful properties of HMM is that the states
are hidden, and the model infers those states by a



sequence of observation symbols. In the system, we
regard that the intention is hidden under the motion
trajectory expressed as a sequence of motion direction
observations. HMM needs two processes: the HMM
learning process (or the reestimation process), and the
succeeding process of using the trained HMM to es-
timate the appropriate model from the observation
sequence.

3.1 HMM Parametric Definitions

We set 2 HMMs: \; = {A;,B;,m} with i = 1,2.
Ay is the model with interactional intention, and A,
is the model without interactional intention. Each
model has 2 states, "Has Intention” and ”No Inten-
tion”. The observation data are composed of the di-
rection of motion velocity O4 and the curvature of
the motion trajectory O.. The data are symbolized
as follows. If the movement direction of the person
turns toward the robot arm, Oy is set to 0, otherwise,
it is set to 1. When the curvature of the trajectory
is smaller than a threshold, O, is 1, and otherwise,
O, is 0. Observation symbol O, = 1 indicates a high
chance of changing her movement direction, and con-
sequently, Oy is likely to change the value, from 0 to
1, or vice versa. To make a general symbol by which
both Oy4 and O, are taken into account, the observa-
tion data vector O, = {Oy4,,0,,} (t is any time in a
sequence) is symbolized as

O

(3)

which we call an integrated observation, or simply ob-
servation O, in the study.

O,(' 2+ OC‘,

3.2 The Learning Stage (Reestimation)
With the learning capability of HMM, AVIIIS com-

putes appropriate inference models through K sequences

of observation O'...O% for the 2 HMMs )\, and A,
according to the judgment of the system whether the
person finally exerts an operational force to the robot
arm endtip, OF = {0}, 04, ...,
termination) and OF (¢t = 1 — T) obtained from (3).

In the learning stage, the original Baum-Welch'’s
algorithm [G] is extended to reestimate the models by
calculating matrices A = {a;;}, B = {b;(l)}, and
initial state vector m for each model.

3.3 The Inferring Stage (Estimation)

It is required that AVIIIS generate an output of the
intention inference even at ¢ in the middle of the time
sequence (1,...,7"). Therefore, we need to compute
P (O4|A), probability of the partial observation se-
quence O, = {0,,...,0;}, given the model A. The
inferred model is the one that has the highest proba-
bility for the observation sequence up to time t. This

0%}, with (k=1,..,K; T:
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probability of the model is calculated by

N
P(ON) =Y a (i) (4)

i=1

where N is the number of states in the model (N=2,
in the study), and ay (2) is the forward variable.

4 Experimental results

In the study, HMM is applied as a noise reduction
filter for gaining wide adaptability of the system, and
in our experiments, it is trained through observation
sequences of the human movement direction and its
curvature information.

Figure 4 shows two of these sample outputs. The
upper figures depict the trajectories of the person,
and the lower graphs are the resultant observation
sequences (Jy, O, and the inferred interactional inten-
tion estimated by computation of P(O|A;). The left
side is a No-Intention sample, and the right side is a
Has-Intention one.
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Figure 4: Observed trajectory and Intention Inference
with Curvature Information

As we can see further from the tables in Appendix,
some specific points can illustrate the idea:

- At time t, if P (O,|\;) and P (O|\,) € [0.41,0.59),
the systemn is considered to be unstable, and otherwise,
it is stable. The system in stable phases can deal with
some small noises from both observations.

* According to No-Intention sample (Figure 5a):

— We can see the effect of the curvature in-
formation O, which is counted in O, at
t =2 and t = 18,19. The output of the
interactional intention inference is so un-
stable at t = 2, that the result changes to a
wrong model A;. But when the system is
stable at t = 18,19, observation O, = 1 in-
creases P(O,|\;), but the result A, is still
maintained. The curvature information in-
dicated at t =5 — 8 (0O, = 1) results in a



change from model Ay (unstable status) to
model A\, (unstable status).

— The observation sequence from ¢t = 10 —
20 with O4 continuously equals 1 makes the
system stable with the model A,.

* According to Has-Intention sample (Figure 5b):

— The effect of curvature observation can be
seen at t = 2,3 and t = 5,6, where O, =
1 increases P(O¢|A;) while the computed
result of Oy is 1 at ¢t = 2,3, and decreases
P(O;'/\l) even Od =0att= 5,5

From t = 7 till the termination, the perfor-
mance of the system is in a stable condi-
tion, even when the observation sequence
contains some noises at t = 11 — 14 and
t = 18 — 20. It is referred that the person
still has an intention even his movement di-
rection has changed to move outward for a
while, and until he moves back to the robot
arm (at ¢t = 15 — 17), the hidden state is
still "Has-Intention”.

It is evident that this property of the stable sys-
tem is effective to deal with taggering noise on
the human trajectories when a person is walking
step by step.

5 Conclusion

We have discussed our work on the use of visual infor-
mation and the combination of both extended HMM
and cubic Spline approximation techniques to infer
the human interactional intention. This combination
has privilege as the requirement for real-time process-
ing.

We described the visual information processing meth-

ods of both extracting the human entrance and mod-
eling her head using a dirvect elliptic matching tech-
nique. The cubic Spline approximation technique ap-
plied to the trajectory of human head movement re-
duces the control points of the curve according to the
relative change in the positions to the interpolated
curve. After that, movement direction and curvature
information over the trajectory were taken as obser-
vations for the system. Experimental results showed
the advantage of using the observation including mo-
tion direction and curvature information of the hu-
man trajectory. By using the HMM with a modi-
fied reestimation process for the complete parameter
set of the model, we finally proposed to infer human
interactional intention as an adaptive pattern match-
ing problem with incomplete sequences of observation.
Experimental results showed the adaptiveness of re-
ducing the staggering noise over the trajectory of the
lllllllilll moveent.

Nevertheless, the camera in our system is settled
considerably low, which results in a local sight of the
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trajectory. The HMM used is a discrete one which re-
quires that observation data be symbolized. This one
deteriorates the continuous information from observed
data. Our ongoing work includes improvements for
extending the human modeling operation to human
arms and other body parts as well as for detecting
the human eye direction, and further work will be pro-
cessed with the continuous HMM in the same frame
work of our proposal.
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