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The goal of this research was to find out if the 
performance of color based wood inspection 
systems could be improved by combining color and 
texture information. T h ~ s  paper describes a wood 
surface inspection method that combines color 
percentile features with texture features based on 
simple spatial operators. The proposed method is 
tested with images from an application environment 
developed for detecting and recogwing defects in 
parquet slabs. The results indicate that the 
performance obtained with a state of the art color 
based method can be improved by using additional 
texture information. 

1 Introduction 

Visual inspection plays an important role in the 
quality control of many manufacturing processes. 
Traditionally, this job has been mainly carried out 
by human inspectors. The use of human labour in 
routine tasks like this should be avoided if possible. 
Results in manual inspection are often worse than 
one could expect, because the performance of a 
human inspector has a strong tendency to drop 
radically in uninteresting jobs. A human inspector is 
also quite insensitive to gradually occurring small 
changes. On the other hand, human inspector's 
ability to handle unexpected situations is difficult to 
achieve with machine vision systems. For a good 
survey on automated visual inspection, see [I]. 

Visual inspection of smooth uniformly coloured 
surfaces can be automated quite easily. The presence 
of texture in the image makes the automating 
problem much more complex. Classification of 
wood surfaces is especially challenging because of 
the strongly varying appearance of wood. 

The benefits of automated inspection in wood 
industry are easily demonstrated. In lumber 
production the product volumes are huge and 

therefore even small improvements in quality result 
in considerable savings. High grade wood is 
considerably more expensive than low grade or non- 
graded wood and visual inspection is often the most 
laborous part in otherwise highly automated process. 

Human made grading is often inconsistent. There 
have been observations that the correspondence 
between different graders is surprisingly low. In a 
test of four grades two different graders gave the 
same grade for only 60% of the boards [2]. This 
inconsistency is a problem when training material 
for visual inspection system is gathered. Good 
performance cannot be achieved with poor training 
material. Therefore the training material should be 
selected with special care. 

Various systems for automated visual inspection 
of wooden surfaces have been developed [2,3]. 
Almost every pattern recognition technique has been 
tried. It would be interesting to compare the 
performance of these methods, but the differences in 
imaging environments make this quite difficult. 
There are applications using normal grey level and 
color cameras, but there are also numerous 
applications where special sensors like X-ray, laser 
profile, microwaves and electronic colorimeter are 
used. 

Usually the color is considered to be important in 
wood surface inspection. Many of the defects have 
quite distinctive color properties compared to sound 
wood. For more information on color properties of 
wood defects, see [4]. First order color percentile 
features were successfully used for describing the 
color information in [2,3]. However, there are 
defects like sound knot, which have similar color 
and are therefore difficult to recognise. Shape or 
texture properties are needed to discriminate these 
defects. 

Our goal was to find out if the performance of 
color based wood inspection systems could be 
improved by combining color and texture features. 
The performance of the proposed approach was 



tested in parquet slab inspection. The easy 
generalization to another wood inspection problems 
was also one of the targets in research. 

2 Parquet inspection problem 

The grade of a parquet slab is determined by 
measuring the sizes, types and number of defects. 
The slab is classified to the best grade whose 
requirements it fulfills. Of course human graders 
seldom follow strict numerical definitions about the 
defects. Instead the grading is based mainly on the 
general visual appearance of the parquet slabs. 
Therefore the results are difficult to compare to the 
ones achieved by human graders. 

The image set used is the same as Kauppinen 
used in [2]. It is from the ESPRIT-P2 1023 (CATIE) 
project and consists of 150 images of beech wood 
parquet slabs. The images were taken with a 12-bit 
color line-scan camera. The training areas were 
marked by creating images, where the pixels 
belonging to the selected training class were marked 
with colors by hand. The images were divided into 
non-overlapping samples sized 32x32 pixels. 
Examples of parquet slab images and corresponding 
training images are shown in Fig 1. 

Figure 1. Two parquet slab images and 
corresponding painted training images. 

The total number of these samples was 26855, 
and 1498 of them were used as training set. The 
distribution of samples to different classes is shown 
in Table 1. Approximately half of the training 
samples present good wood. The small number of 
streaks is compensated by increased number of 
splits, which are considered to be visually quite 
similar to the streaks. 

Table 1. The number of samples in each class 

Class All Training 
samples set 

Good wood 16027 763 
Shot (sound knot) 430 47 

Bknot (black knot) 
Rpith (red pith) 

Bpith (black pith) 
Bark pocket 

Grain 
Streak 
Crack 
Split 

Lhydrolysis (light hydrolysis) 
Dhydrolysis (dark hydrolysis) 

Discoloration 
Lglucose (light glucose spot) 
Dglucose (dark glucose spot) - 

Water stain 813 50 
TOTAL 26855 1498 

Two types of classification tests were performed. 
First, a two-class defect detection test was 
performed, in which all the different defect types 
were considered to belong in a class called defects. 
In order to test the ability to recognise types of 
defects we made another classification test using all 
the 16 classes. In practise, the defect recognition 
would be done only for those regions that have been 
classified as defects in the defect detection stage. In 
order to have comparable results, the defect 
recognition was tested using all the test samples. 
First the color percentile features and texture 
features were all used individually and then color 
percentile features were combined with texture 
features. 

3 Features used in this study 

3.1 Color percentile f e a m s  

Recently, a method based on color percentile (CP) 
features for wood inspection has been proposed 
[2,3]. The method is computationally very simple 
and has performed very well in various inspection 
problems. The color percentile features are 
calculated from cumulative color channel 
histograms Ck(x), which is the sum of normalized 
histogram Pk(x) of color channel k for all the values 
that are smaller than or equal to x. The value for the 
percentile feature is the value of x when Ck(x) is 
known. If the color percentile feature value is 
denoted with Fk(y) the relationship is described as 

F k ( y ) = c i ' ( ~ ) = x  ('1 
where y is a value of the cumulative histogram value 
in the range [0%, loo%]. As can be seen, the 
concept of percentile is extended to have any real 
value between 0 and 100, so the name percentile 
might be misleading. 



Percentile features are sensitive to intensity 
changes because they measure direct values of color 
channels. Invariance against the shift of the 
histogram can be achieved by calculating 
differences of two percentiles. 

These percentile difference values can be 
computed also for different color channels, which 
gives information about the relative positions of 
histograms of different channels. This can be usehl 
in recognising certain color defects. 

Invariance against the width of the histogram can 
be achieved by normalising percentile differences. 
This is done by scaling with the difference of 
maximum and minimum percentile values. 

Maximum and minimum percentile values may be 
unreliable because of saturated noise in the images. 
Therefore it is safer to use, for example, 95% and 
5% percentiles. 

It should be noted that color percentile features 
can be used in other color spaces than RGB as well. 
The only requirement is that the values measured 
cannot be circular, i.e. the smallest value is close to 
the largest value. This is the case for example with 
the hue in HSI color space. In this kind of situation 
the starting point for calculating the cumulative 
histograms cannot be defined. 

Percentile differences give some invariance 
against the changes of illumination and reflectivity 
properties of the inspected surface. However, they 
cannot distinguish two histograms from each other if 
the only difference between them is the hstogram's 
position. Usually it is reasonable to have both 
original and difference percentiles in the feature 
vector. 

In this paper 117 different types of percentile 
features were calculated. These features included 
both single percentiles for different color channels 
and differences of percentiles. If all of them were 
used the calculations needed would be too time 
consuming. In addition, these 117 features contain 
much redundant information and therefore the 
performance would not be optimal. In order to find 
the optimal feature vector all the possible 
combinations should be tested. That is not 
reasonable and therefore some search procedure 
must be used. In this study, the final 13 features 
were selected using forward and backward search. 

In feature selection there is a danger that the 
feature vector becomes too optimized for the 
training material. Thls can be avoided by not trying 
to acheve the best possible result. Instead one has to 
select feature vector of lower dimension giving a 
satisfactory result. 

3.2 Feattms based on grey level 
cooccumnces and differences 

The cooccurrence method (CO) is one of the best 
-known and widely used approaches to texture. A 
GxG gray level cooccurrence matrix Pd is defined 
for a displacement d = (dx,ciyl as follows. The entry 
(ij) of cooccurrence matrix Pd is the number of 
occurrences of the pair of gray levels i and j which 
are a distance d apart.[5] 

Conventionally, the second order statistics are 
accumulated into a set of 2-dimensional matrices, 
which are computed for displacements in different 
directions and displacements. Cooccurrences for 
several distances can be computed to form a 
multidimensional cooccurrence matrix [ 6 ] .  In this 
paper, the following distances were used: (0,1), 
(191), (l,O), (-l,O), (-1711, (l,-l)(O,-l)and (-l,-l). 

The produced coocurrence matrix is in this case 9- 
dimensional. PC, = (go, g,, g2, g3, g4, g5, g6, g7, gal. 

When we calculate the difference between pixel 
value distance d apart and the center pixel, we get 
the corresponding signed gray level difference. In 
t h s  case Psd = (gl - go, g2 - go, g3 - go, g4, - go, g5 - go, 
g6 - go, g7 - go, g8 - go). Recently, Ojala et al. [7] 
showed that an approach based on multidimensional 
distributions of signed gray level differences of 
neighboring pixel values (SDIFF) is very powerful 
for texture classification. An advantage of gray-level 
differences over the traditional cooccurrence method 
is that the differences fall mainly within a narrower 
range than the gray levels, due to the high 
correlation between gray levels of adjacent pixels, 
consequently providing a more compact description 
of texture. Another advantage is that the signed 
differences are not affected by changes in mean 
luminance. 



3.3 LBP features 

Ojala et al. [8] have suggested the use of the 
Local Binary Pattern (LBP) texture operator shown 
in Fig. 2. The original 3x3 neighborhood is 
thresholded by the value of the center pixel. The 
values of the pixels in the thresholded neighborhood 
are multiplied by the weights given to the 
corresponding pixels. Finally, the values of the eight 
pixels are summed to obtain a number for this 
neighborhood. The LBP histogram computed over a 
region is used for texture description. Because there 
are 2' possible LBP values the produced histogram 
consists of 256 bins 

pixels example tl~rcsholdcd tveights 
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Figure 2. Computation of LBP operator 

LBP provides us with knowledge about the spatial 
structure of the local image texture. LBP is invariant 
against any monotonic gray scale transformation. It 
does not address the contrast of texture, which is 
important in the discrimination of some textures. For 
this purpose, LBP could be combined with a simple 
contrast measure C, which is the difference between 
the average gray levels of those pixels which have 
value 1 and those pixels which have value 0, and 
consider joint occurrences of LBP and C. The 
contrast measure was not used in these experiments, 
because the contrast information is included in the 
color percentile features. 

4 Classification methods 

The performance of different classifiers varies 
depending on the application. There is no superior 
general purpose classifier. The selection of the used 
classifier depends on the required accuracy, 
complexity of training and classification and the 
easiness of adjusting classification rate by the user. 
In this paper, the KNN-classifier was used. 

The KNN-classifier is based on the fact that if two 
elements are close in their representation space, they 
probably belong to the same class. The color 
features of each sample are represented by a feature 

vector, which represents its coordinates in the 
multidimensional representation space. Textural 
properties are represented by a feature distribution, 
which is similarly represented in the representation 
space. The sample is classified to the class where 
most of the nearest neighbors belong. 

The reliability of a KNN-classifier increases with 
k. A strict rule is to impose that the k nearest 
neighbors belong to the same class to take a 
decision. It can be smoothed by weighting the 
voting of each neighbor according to its rank or 
distance. However, this increases the complexity of 
the classifier and therefore the standard version was 
used. 

When distance-based classifiers like KNN- 
classifier are used, the features must be scaled 
properly. All features should have a similar value 
range in order to have equal weights in the distance 
calculation. Typically all the feature values are 
scaled to have certain maximum and minimum 
values, or to have a certain mean and deviation. In 
order to calculate the distances and to define the 
nearest neighbors, a metric must be selected. With 
color percentile features the standard euclidean 
distance was used. Distances between textural 
feature distributions were calculated using a log- 
likelihood distance, which is described in Section 
4.2. 

4.2 Classification based on feature 
distributions 

Most of the approaches to texture classification 
quantify texture measures by single values (means, 
variances etc.), which are then concatenated into a 
feature vector. l%s is the case when color histogram 
percentile features are used. In this way, much of the 
important information contained in the whole 
distributions of feature values might be lost. There 
are many different ways of measuring the 
dissimilarity between sample and model histograms. 
In our experiments we used log-likelihood measure: 

where N is the number of bins. S, and Mn are the 
sample and model probabilities of bin n [7]. 

Because multidimensional histograms are too 
large to be used as such, they must be quantized. 
Usually the quantization is done by reducing the 
number of gray levels. Instead of reducing number 
of gray levels, for example, by a simple 
requantization of each coordinate, we partition the 



k-dimensional space using learning vector 
quantization as described in Ojala et al. [9]. 
Quantization for cooccurrences and signed 
differences using 256, 64 and 32 codevectors was 
used in experiments. 

4.3 Combining feature distances 

For each sample two different properties are 
calculated. A feature vector containing color 
percentile features and a distribution of either signed 
grey level differences or local binary patterns. 
Euclidean distance was used for feature vectors and 
log-likelihood distance measure for distributions. 
The sum of these two distances is then used in 
KNN-classification. In order to have equal weights, 
the distances must be scaled to have similar value 
range. For this purpose distances between all the 
samples in the training set were calculated and 
minimum, maximum and average distances defined. 
The scaled distances are then obtained using 
equations 

5 Experimental results 

As could be expected, the role of color 
information in the defects of the wood material is 
very significant. When defect detection was done 
using features separately, the error rates varied from 
3.5% (with color percentile features) to 25.2 (with 
LBP) as can be seen in Table 2. The results obtained 
with percentile features represent the state of the art 
in wood inspection [2]. The cooccurrence method 
provided better results than the other texture 
features. This is because these features are 
correlated to image intensity, whereas the other 
texture methods used are not. 

Table 2. Defect detection and recognition error rates 
for different features 

SDIFF SDIFF LBP CO 
CP 32 bins 256 bins 256 bins 256 bins 

2.0 10.8 11.2 14.4 p alarm 
3.5 

g error 
2. escape 

5.8 41.6 39.9 41.2 13.4 

3.5 23.2 22.7 25.2 
error 

7.5 

When color and texture features were combined 
the scaling with average values gave a little better 
results in defect detection test. On the other hand, in 
defect recognition the scaling with minimum and 
maximum seems to work better. Now the 
cooccurrence method performed worse than LBP 
and SDIFF. The results for scaling with average are 
shown in Table 3, and the results for scaling with 
minimum and maximum values are presented in 
Table 4. The error rates for classification with color 
percentiles only are shown for comparison. 

Table 3. Error rates for scaling with average. 

C P +  CP+  CP + CP SDIFF SDIFF ::; CO 256 
32 256 

false 2,0 1 . I  1.3 1.2 g alarm 
1.8 

$ error 
9 6. escape 5.8 5.6 4.9 6.0 5.9 

3.5 2.9 2.8 3.1 
error 

3.4 

2. 1. Z 0 total 
o 0  
3 error 

14.1 11.2 11.2 12.3 14.0 

Table 4. Error rates for scaling with minimum and 
maximum values. 

C P +  CP+  C P +  CP+ 
CP SDIFF SDIFF LBp CO 256 

32 256 
false 2,0 

p alarm 1 .O 1.6 0.8 1.7 

g error 5.8 5.8 4.9 6.1 6.8 
c. escape 

3.5 2.9 2.9 3,O 3.8 
error 

6 Conclusions 

As our results indicate, the role of color 
information in the defects of the parquet material is 
very significant. When defect detection was done 
using features separately, the error rate was much 
lower with color percentile features than with the 
texture features. The cooccurrence features 
outperformed the signed differences and LBP, which 
indicates that the intensity information is very 
descriptive. A problem with color percentile features 
is that they do not describe the dependencies 
between neighboring pixels. 



The performance of classification can be 
improved if the color information is combined with 
textural properties. When color percentile features 
were combined with cooccurrence matrices, the 
performance dropped, but combining with signed 
differences and LBP improved the results. 
Cooccurrences and color percentiles are hlghly 
correlated because they both contain intensity 
information. Therefore, the addition of cooccurrence 
features does not bring much new information. 
When illumination invariant texture features like 
LBP and signed differences are added, the results 
improve. 

Texture features are computationally more 
complex than color percentile features. However, 
the LBP operator used in this study is 
computationally very simple. It can be realized with 
a few operations in a small neighborhood and a 
lookup table. It is also very encouraging that 
roughly quantized signed difference histograms 
perform well. The computation of color and texture 
features could be done in parallel to further speed up 
the process. 

The results achieved in defect detection and 
recognition are difficult to compare to the ones 
achieved by human graders. The final grade for a 
parquet slab is assigned according to the number and 
the types of defects. As tests described in [2] 
performed by Junckers and DTU indicate, these 
defect detection and recognition rates form a good 
basis for the development of an automated 
inspection system. 

The information on the position of the inspected 
regions was not used in this study. It is obvious that 
adjacent regions are more likely to have same type 
of defects. Especially the recognition accuracy of 
the defects could be improved if also the location 
information were used. 

Our experiments show that the performance of a 
wood inspection system can be improved by 
combining color information with texture 
information. The use of KNN-classifier and similar 
feature calculations for the whole surface makes this 
approach quite easily applicable to other visual 
inspection problems. 
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