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Abstract 

Previous works on range image segmentation con- 
centrate on surface patches that can be well repre- 
sented by certain mathematical functions. In this 
paper we consider the more qualitative segmentation 
problem of decomposing a range image into convex 
parts/objects. An edge-based approach is proposed 
which uses an adaptive contour closure algorithm in 
conjunction with a global convexity test. Experi- 
mental results on two range image sets are reported 
to demonstrate the performance of our convex de- 
composition technique. 

1 Introduction 

Typically, range images are segmented into sur- 
face patches that can be well represented by certain 
mathematical functions, e.g. bivariable polynomial 
functions, quadrics, and superquadrics. In this pa- 
per we consider the more qualitative segmentation 
probleni of decomposing a range image into convex 
parts/objects. 

Convexity is a powerful grouping property for sev- 
eral reasons. It is unlikely that a random set of 
data  will form a convex shape. In addition grouping 
based on convexity can be done independent from 
any mathematical shape model in a qualitative way. 
This potentially enlarges the applicability of such an 
approach compared to  model-based segmentation. 

In this work we assume that objects are consti- 
tuted by convex parts and these parts are separated 
from each other by concave contours. An example 
of such an object is given in Figure 1 (left) which 
consists of two boxes. On the other hand Figure 1 
(right) shows an L-shaped object that violates our 
assumption. This object can be considered as two 
boxes meeting a t  their contours. Despite of the as- 
sumption the class of objects under consideration in 
this work is general enough to  be useful in various 
applications, particularly when dealing with objects 
like boxes and drums [ 5 ] ,  and mail pieces [ I ,  61. In- 
terestingly, it turns out that the decomposition al- 
gorithm proposed in this paper is able to  process 
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Figure 1: Object consisting of two boxes (left) and 
L-shaped object (right). 

even objects beyond the defined class, for instance, 
objects like the L-shaped one in Figure 1, properly. 

In the literature very few work has been reported 
on convex decomposition of range images. In [8] 
simulated electrical charge distributions over an ob- 
ject's surface are used for this purpose. Trucco [7] 
deals with slice data  and partitions each slice into 
convex segments. Then, the segments are locally 
grouped into larger parts. Since no global convexity 
test is carried out, there is a high risk of obtaining 
non-convex parts. 

In contrast we consider a global convexity test 
as an essential component of convex decomposition. 
Our approach is edge-based and uses an adaptive 
contour closure algorithm within the hypothesize- 
and-verify paradigm, where the verification step is 
totally guided by a global convexity test. We de- 
scribe the adaptive contour closure algorithm and 
various components of our convex decomposition ap- 
proach in Sections 2-4. Then, experimental results 
are reported in Section 5 .  Finally, some discussions 
conclude the paper. 

2 Contour closure algorithm 

Fundamental to convex decomposition is a con- 
vexity test that decides if an  image region repre- 
sents a convex part. Given such a convex test, we 
may apply traditional region-based approaches such 
as region growing to  partition a range image into 
convex parts. In this work, however, we prefer an 
edge-based approach due t o  its various advantages 
[31. 

For our purpose we need t o  detect edge points on 
concave contours. The  basic difficulty we encounter 
then in solving the convex decomposition problem 



lies in the incomplete nature of detected contours. 
Generally, edge detection methods cannot guaran- 
tee closure of boundaries for surface extraction, thus 
resulting in the need of a subsequent grouping and 
completion process. 

In [3] we have developed an adaptive contour clo- 
sure algorithm for this purpose. The fundamen- 
tal observation there is that any contour gap can 
be closed by dilating the edge map, or equivalently 
eroding the regions. If the largest gap of a region has 
a length L, then L/2 erosions will successfully com- 
plete the region. However, one has no idea about 
the actual value of L before the grouping process is 
finished. In order not to miss any region, we poten- 
tially have to select a high value for L as maximum 
allowable gap length, resulting in a consistently large 
number of erosions applied to all regions of an input 
image. This is not only an unnecessary overhead in 
dealing with regions that are (almost) closed. But 
also relatively small-sized or thin regions will dis- 
appear. Instead, the adaptive contour closure al- 
gorithm carries out only the minimum number of 
erosions necessary for each particular region. Our 
method (see Figure 2 for an outline) is embedded in 
the hypothesize-and-verify paradigm. It increases 
the number of erosions only for those regions that 
cannot be successfully verified. 

From the input edge map, region hypotheses can 
be found by a component labeling. Usually, this ini- 
tial region map contains many instances of under- 
segmentation. To distinguish between the correctly 
segmented and under-segmented regions, we per- 
form a region homogeneity test for each region R of 
the initial segmentation. If the region homogeneity 
test is successful, the region R is recorded. Oth- 
erwise, there still exist open contours within R. In 
this case we perform one erosion operation within R, 
potentially closing the gaps in the contours. Again, 
a component labeling is done for R to find new re- 
gion hypotheses, and these are verified in the same 
manner as for the initial regions. This process of hy- 
potheses generation (component labeling) and veri- 
fication (region homogeneity test) is repeated until 
the generated region hypotheses have been success- 
fully verified or they are not further considered be- 
cause of a region size smaller than a preset threshold 
TSiz,. The task considered in [3] is that of segmenting 
a range image into surface patches. Accordingly, the 
region homogeneity test is conducted using the fit 
error of regions by means of biquartic surface func- 
tions. 

The adaptive contour closure algorithm is of gen- 
eral nature and can also be applied to other tasks 
by replacing the region homogeneity test. For the 
purpose of convex decomposition here this is done 
by a global convexity test. 

3 Convexity test 

A convexity test may be conducted by comput- 
ing the 3D convex hull of the points of a given image 
region and then the maximal distance of the points 

/* Hypotheses generation */  
perform component labeling on input edge map; 
List = { connected regions of size > Tsi,, }; 
while (List != 0) { 

select arbitrarily a region R from List; 
/* Hypotheses verification */ 
verify R using region homogeneity test; 
if (successful) 

record region R;  
else { 
/* Hypotheses generation */  
perform one erosion step within R; 
perform component labeling within R; 
List += { regions of size > Tsiz, within R}; 

1 -  
postprocessing; 

Figure 2: Adaptive contour closure algorithm. 

to the convex hull. The points are regarded to form 
a convex part only if this maximal distance is small 
enough. Computation of convex hulls and distances 
in 3D tends to be computationally expensive. There- 
fore, we resort to another solution that reduces the 
initial 3D problem to 2D tests. 

We assume that each image row/column corre- 
sponds to a curve in a plane in 3D, resulting from 
the intersection of the plane with the surfaces of ob- 
jects in the scene. This condition is satisfied by a 
wide range of scanners. Among them, some scan- 
ners provide range images z(x, y) regularly sampled 
in both coordinate directions that are particularly 
easy to deal with. For description clarity we will use 
this type of range images to introduce the convex- 
ity test. But it is easy to see that the discussion 
applies to other types of scanners fulfilling the con- 
dition above as well. 

Given an image region R that corresponds to a 
convex part, each image row in R with y being a 
constant yo is simply a convex 2D curve in the xz- 
plane (with respect to the positive z-axis). Similarly, 
each image column in R with x being a constant 
xo implies a convex 2D curve in the yz-plane. As 
a convexity test we may verify the convexity of all 
rows and columns in a given image region R. In 
general, however, this is only a necessary but not 
sufficient condition for R being a convex part in 3D. 
A counterexample is the function z = xy with neg- 
ative Gaussian curvature. Here both z = yox for 
a constant yo and z = soy for a constant xo are 
straight lines and thus convex. But the global shape 
is not convex. Generally, the 2D-based convexity 
test will fail in the case of hyperbolic surfaces. How- 
ever, it suffices for objects like boxes and drums [5], 
mail pieces [I, 61. In addition, spheres, cylinders, 
and planes that are frequently used in manufactur- 
ing can be handled well. In our experiments re- 
ported in Section 5 we typically deal with parts that 
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Figure 3: Convexity test of a curve by means of 
computation of convex hull and distances. 

have non-negative Gaussian curvatures. Therefore, 
we can still use this simple convexity test. 

It remains to  solve the problem of verifying the 
convexity of a 2D curve. For this purpose the idea 
of a universal convexity test (computation of convex 
hull and distances) is applied to  this 2D problem 
instance. We adapt the well-known Jarvisls march 
algorithm for convex hull construction of 2D points 
in the following way. Given n points pl , p2, . . . , pn 
of a curve (see Figure 3), pl is definitely a vertex 
of the convex hull. The next vertex is the point pk 
that provides the smallest angle between PlPk and 
the z-axis. Then, the next vertex of the convex hull 
is pl, 1 > Ic, that  provides the smallest angle between 
pip,, and pkpl, and so on. The  search is continued 
until we reach pn. For each pair of two successive 
vertices pkpl of the convex hull we compute the de- 
viation of each point p,, Ic + 1 5 i 5 1 - 1, between pk 
and pl from the convex hull by means of the perpen- 
dicular distance of p, to the line pkpl. This way we 
finally obtain the maximal derivation of all points 
from the convex hull. For a given image region R 
the global maximum from all rows and columns in 
R is tested against a tolerance threshold for the con- 
vexity of R. 

4 Postprocessing 

When applying the adaptive contour closure algo- 
rithm outlined in Figure 2 to  the convex decomposi- 
tion problem, it remains to  specify the postprocess- 
ing step. In the results we obtain without postpro- 
cessing edge pixels are not considered to  be part of 
regions. In addition, the erosion necessary for con- 
tour closure discard pixels near region boundaries. 
These unlabeled pixels should be added to  their cor- 
responding regions. 

As a simple strategy for doing this we can assign 
an unlabeled pixel p the label of an adjacent labeled 
pixel q if the depth (2) difference between p and q 
is lower than a preset tolerance. The assignment is 
repeated until no further operation is possible. 

More rigorously, we can dilate a region once where 
only adjacent unlabeled pixels are considered. Then, 
the resulting region undergoes the convexity test de- 
scribed in the last section. In case of success the di- 
lated unlabeled pixels are merged to  the region. This 
procedure can be applied to  all regions and repeated 
to perform all possible merge operations. Obviously, 
this second postprocessing method is computation- 
ally more expensive than the first one in general. 
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Figure 4: Image col2+ball from MSU set: (a) surface 
segmentation; (b)  input edge map; (c) convex de- 
composition before postprocessing; (d) final result. 

Interestingly, we have experienced that there is no 
essential difference in the results achieved by the two 
methods. 

5 Experimental results 

The convex decomposition algorithm has been 
implemented in C and tested on two range image 
sets. In our experiments we have used the edge 
detection method reported in (21 that assigns each 
pixel a jump edge strength value and a crease edge 
strength value together with the corresponding edge 
type (convex/concave). Only jump edge points and 
concave crease edge points with sufficient high edge 
strength values are taken t o  form a binary edge map 
as the input t o  the convex decomposition algorithm. 

The  first source of test images was the popular 
MSU range image set acquired by a Technical Arts 
scanner. The results of one test image from this set 
are shown in Figure 4. For comparison purpose the 
surface segmentation using the method described in 
[3] is given there as well. As expected the three sur- 
faces of the box and the two surfaces of the cvlinder 
are grouped together as a convex part, respectively. 

The second test image set was acquired by a 
K2T model GRF-2 structured light scanner and has 
served for comparing range image segmentation al- 
gorithms [4]. The final results of four images from 
this set are shown in Figure 5 .  Here surface types 
cone, cylinder, and sphere are present besides planar 
surface patches. 

As stated in the introduction section, the basic 
assumption we made in this work is that objects are 
constituted by convex parts and these parts are sep- 
arated from each other by concave contours. Objects 
such as the L-shaped one in Figure 1 violate this as- 
sumption. A similar object can be seen in the test 
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Figure 5: Images from K2T set: (a) conepb60: 
cone+planes; (b) balljoint: cylinder+sphere+plane; 
(c) dogbone2: cylinder+spheres+planes; (d) cyl- 
socpb: cylinders+planes. 

image from the MSU set given in Figure 6. In this 
case the separation into two convex parts partially 
occurs within a surface (the brightest one), result- 
ing in a long contour gap in the edge map. The 
adaptive contour closure algorithm in conjunction 
with the global convexity test generates two rela- 
tively small convex parts which are then expanded 
by the postprocessing step. This example demon- 
strates the ability to deal with objects that violate 
the basic assumption of our convex decomposition 
method. 

The computation time on a SUN Ultra5 work- 
station is listed in Table 1. The resolution of test 
images from the MSU set varies around 200 x 200 
pixels; that of col2+ball amounts to 217 x 197 pixels. 
On the other hand, all K2T images have a uniform 
resolution of 480 x 640 pixels. The listed computa- 
tion time is more or less typical for all images of each 
test set. As expected the rigorous postprocessing 
method is usually more expensive than the simple 
one. Since they produce essentially the same final 
results, we generally prefer the fast postprocessing 
based on simple depth value comparison. 

6 Conclusions 

Previous works on range image segmentation con- 
centrate on surface patches that can be well repre- 
sented by certain mathematical functions. In this 
paper we consider the more qualitative segmentation 
problem of decomposing a range image into convex 
parts/objects. An edge-based approach has been 
proposed which uses an adaptive contour closure al- 
gorithm in conjunction with a global convexity test. 
Experiments have been conducted on two range im- 
age sets and shown good results. 

One limitation of the current implementation is 
the 2D-based global convexity test described in Sec- 
tion 3. However, it is important to emphasize that 
this simple test suffices for objects like boxes and 
drums [5], mail pieces [ l ,  61, and those parts fre- 
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Figure 6: Image grnblk3-1 from MSU set with an 
object violating basic assumption: (a) surface seg- 
mentation; (b) input edge map; (c) convex decom- 
position before postprocessing; (d) final result. 

edge convex convex 
detection decomp. (1) decornp. (2) 

col2+ball 

Table 1: Computation time in seconds: the numbers 
in brackets refer to the postprocessing method. 

quently used in manufacturing, and is therefore use- 
ful in many practical situations. Moreover, the al- 
gorithm is general enough to be extended to other 
domains by simply replacing the convexity test used 
here through a more sophisticated one. 
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