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Abstract 

X-ray mapping images of polished sections are 
classified using two unsupervised clustering algo- 
rithms. The methods applied are the k-means algo- 
rithm and an extended spectral fuzzy c-means algo- 
rithm. The extentions include new types of member- 
ships that are related to the contextual information. 
In addition to the traditional spectral membership 
we apply a spatial membership and a parental mem- 
bership. The parental membership is introduced by 
implementing the algorithm in a scale-space repre- 
sentation. Both spectral and spatial information is 
carried across levels, enhancing speed and visual im- 
pression of the segmentation of image data. 

1 Introduction 

This paper deals with unsupervised classification 
of multichannel scanning electron microscope (SEM) 
energy dispersive spectroscopy (EDS) image data 
from polished sections, also known as x-ray mapping 
imagery. As a case study we segment a multivariate 
image containing 176 rows and 256 columns. The 
image consists of 10 channels that represent the ele- 
ments Al, C, Fe, Mg, Na, 0, P, S, Si, and Ca, see Fig- 
ure 1. As the data are counts and thus ideally follow 
a Poisson distribution as a variance-stabilising mea- 
sure all numbers are squarerooted before the analy- 
sis. 

2 The Extended Fuzzy Algorithm 

Segmentation of multivariate data into a desired Figure 1: The channels 1-10 (row wise) representing 
number of clusters is often done by means of the k- Al, C, Fe, Mg, Na, 0 ,  P, S, Si, and Ca. Dark regions 
means algorithm. If we wish to  consider a (fuzzy) represent high counts. Each image is stretched lin- 
cluster membership degree, the c-means algorithm early between its mean f 3 standard deviations. 
applies, [2]. In [7] a spatial element is added. [3, 81 
add a multi-resolution aspect. 

Given N P-dimensional observations that we means (FCM) algorithm. Let U be an N x C ma- 
wish to classify into C classes using the fuzzy c- trix with the elemenets uic that describe the mem- 



bership for observation i to class c, and let R be a 
P x C matrix that contains the cluster centres, i.e., 
the centroids of the classes. The spectral FCM al- 
gorithm minimises the within class sum of squared 
errors functional J ( U ,  R) under conditions: 

Condition 1 implies that the memberships are al- 
lowed to be partial and can take any value between 
0 and 1. Condition 2 implies that the sum across all 
classes of the memberships of an individual is unity. 
Condition 3 indicates that there must be at least 
one individual with some degree of membership to 
a given class. Hence, empty classes are not allowed 
for. 
Any U that satisfies conditions 1, 2 and 3 is referred 
to as a fuzzy partitioning of N individuals into C 
classes. 

Under the above conditions we shall minimise a 
functional proposed by [2]: 

Here m 2 1 is a fixed parameter that determines 
the degree of fuzziness of the final solution, that is 
the degree of overlap between groups. With m = 1 
the solution is a hard partition, equivalent to that 
obtained by the k-means algorithm. The degree of 
fuzziness increases with m. The higher the value 
of m ,  the lower the membership degrees of observa- 
tions which are far from all cluster centres. As m 
approaches infinity the solution approaches its high- 
est degree of fuzziness, with uic = 1 /C  for every 
pair of i and c. The squared distance between the 
ith observation and the cth cluster center is denoted 
d:c. 

2.1 Spectral FCM 

The spectral fuzzy c-means algorithm 

1. assigns values to P-dimensional feature vectors 
for C cluster centres, F,, c = 1, . . . , C;  

2. assigns to each observation i = 1, .  . . , N cal- 
culates membership weights for clusters c = 
1, . . . ,  C 

where diC is the (Euclidean) spectral distance 
from the running observation to each cluster 
centre d:c = ( r i  - FC)=(ri - F,), and m > 1. 
Alternertively one can apply the Mahalanobis 
distance as in [4]; 

3. calculates new cluster centres from 

Steps 2 and 3 are iterated until the largest change 
in cluster membership becomes small or zero. 

2.2 Including Spatial Information 

In this section two new memberships, the spatial 
and the parental, are introduced that include spa- 
tial context information. Before calculating the new 
cluster centres we merge the spectral, the spatial, 
and the parental memberships into joint member- 
ships which are applied as weights for the spectral 
observations. 

We define spatial membership by 

where 

corresponds to a Markov random field (MRF) energy 
function, p 2 0 is a weighting parameter, and Z is a 
normalising constant. The sum over N indicates a 
sum over the neighbourhood of an observation and 
IN1 is the number of neighbours in N .  With P = 0 
no spatial context information is included. The spa- 
tial membership to a class is large if the observa- 
tions in the neighbourhood have large memberships 
to the same class and small if the neighbours tend to 
belong to other classes. The clique potential is pa- 
rameterized by a user defined parameter, p. In each 
iteration we estimate the spatial membship degrees 
from the spectral memberships. 

Using a combination of blurring and subsam- 
pling a multiresolution scale-space pyramid is con- 
structed. We apply a Gaussian blurring kernel and 
perform subsampling such that a parent pixel at 
level j has four children a t  level j - 1. We use re- 
flection in order to handle border effects. Level 0 
corresponds to the level of highest resolution, and 
the number of levels is set by the user. 

Applying the FCM algorithm to the scale- 
pyramid we start a t  the top level performing a seg- 
mentation. The resulting cluster centres are passed 



down to the next level in the pyramid as initial clus- 
ter centers. Passing the memberships found a t  a 
higher level down through the pyramid introduces 
additional spatial awareness into the algorithm. We 
introduce the additional membership as an external 
field that corresponds to an a priori knowledge of 
the memberships of the given observation to the dif- 
ferent classes. The membership of a parent of an 
observation to a class c is denoted uPaTent,,. The 
joint spectral-spatial-parental membership can now 
be calculated as 

3 Results 

The k-means result is generated by the SAS fast- 
clust procedure, [5]. 

Applying the c-means algorithm to the data with 
spectral information only reveals that although the 
hard classification looks sensible, the membership 
degrees are all very low (not shown). Hence, the 
confusion concerning the segmentation is relatively 
high. Adding spatial and parental context leads to 
more distinct membership degrees, i.e., membership 
degrees closer to 0 and 1 indicating a better classifi- 
cation. 

The algorithm is applied using m = 2, P = 1 in a 
scale pyramid consisting of four levels. The parental 
membership is introduced from level two and down, 
see Figures 2 and 3. 

Comparing the hard result for the k-means and 
the extended c-means algorithms we notice that the 
noise-like structures have been avoided for the lat- 
ter. The memberships have been thresholded a t  0.5 
introducing a reject class (the white regions in the 
right image of Figure 3). The reject class dominates 
boundary regions between classes and a few smaller 
regions. Comparing these regions with Figure 1 we 
find that the reject class is dominated by a single 
element, Ca. 

The classes have been compared in order to ver- 
ify that they are true classes. This is done for both 
the k-means and the c-means results by applying 
a Wishart distribution based test to check whether 
any two classes simultaneously have equal means 
and dispersions, [I]. 

Figure 2: Segmentation based on spectral, spa- 
tial, and parental memberships. The six cluster 
membership-degrees (row wise). Dark regions rep- 
resent high memberships. 

4 Conclusions 

Two types of unsupervised classification have 
been applied to SEM/EDS or x-ray mapping im- 
ages, namely k-means and (fuzzy) c-means (FCM) 
classification. The FCM algorithm has been ex- 
tended by incorporating a multi-scale representation 
of the image data, partially for speed up and par- 
tially for carrying spatial information across scale 
levels. Also, a spatial element a t  each scale level has 
been included. Simultaneous inspection of plots of 
class means (Figure 5) and Figures 1 and 2 provide 
support for the applications expert in interpreting 
the contents of the classes found. Comparisons be- 
tween results from k-means and c-means analyses 

In Figures 4 and 5 descriptors are calculated for 
the different classes. The images contain the class Figure 3: Hard result obtained from the 
centres determined by the k-means and the extended membership-degrees. White pixels correspond to 
c-means algorithms. The figures are to be the reject class. The image to the left is obtained 
to Figures 1 and 3. The spectra in Figure 5 are calcu- based on k-means with spectral features. The im- 
lated using the memberships from Figure 2 without age to the right is obtained based on c-means using 
thresholding. additional spatial and parental features. 
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Figure 4: Class descriptors obtained applying the 
k-means algorithm. The class signatures +,, c = 
1 , .  . . , 6  row wise. 

Figure 5: Class descriptors obtained applying the 
c-means algorithm. The class signatures +,, c = 
1, . . . , 6  row wise. 

show that although the class means exhibit some 
similarities the visual impression of the c-means re- 
sult when using the multi-scale approach with spa- 
tial information being carried across scale levels is 
much pleasing indicating large same-class regions. 
Also, the degrees of membership are much closer to  
0 and 1 when compared to a purely spectral c-means 
classification indicating a better result. In spite of 
the problem with classifying the regions rich in Ca 
this type of analysis seems a good exploratory tool 
to  obtain insight into the discriminatory power of 
the data. It thus constitutes a good preprocessor 
for a more thorough supervised analysis (in which 
one could explicitly introduce the Ca-rich regions as 
a class). 

The data used come from the COMB project, the 
Industrial Centre for Surface Microscopy, Microanal- 
ysis and Image Analysis headed by Dr. Leif Hprjslet 
Christensen, [6]. The COMB project is funded by 
Erhvervsfremme Styrelsen, the Danish .Agency for 
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