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Abstract

To further the use of machine vision in animal-
related tasks such as automated monitoring, an un-
derstanding of the behaviour of the animals in their
environment is required. This paper describes an appli-
cation, the Robotic Sheepdog, which exploits animal be-
haviour to achieve its goal. We present a method of au-
tomatically extracting a model of animal behaviour that
1s deemed more appropriate than an alternate rule-
based solution, and describe how this can be used to
determine a likelihood of future events.

1 Introduction

The application of machine vision techniques to the
domain of animals is relatively unexplored compared
with other areas of computer vision research, despite
its obvious potential. Applications such as Schofield’s
[1] use of a vision system to determine automatically
a pig's weight by the surface area of the pig observed
in an image could prove very useful to the agricultural
industry.

One reason for a lack of animal related applica-
tions is an insufficient understanding of the animals be-
haviour within their environment. Simple rule-based
systems of animal behaviour can be used to give visu-
ally appealing results (for example, animations of ani-
mal flocking [2]), but these do not necessarily portray
true behaviour.

In this paper, we describe how a model of animal
behaviour can be learnt automatically from image se-
quences, and applied to predict future behaviour from
a recent history of animal motion.

The work forms part of the Robotic Sheepdog
Project [3]; an investigation into animal interactive
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robotics. The aim of the project is to demonstrate an
autonomous robot system that can successfully ma-
nipulate a group of animals to some pre-determined
goal, by exploiting the animals’ adaptive behaviour.
As a robotic task this differs significantly from pre-
vious work combining robots and animals, where an-
imal behaviour is deliberately minimised by physical
restraint [4]. The task of the sheepdog was chosen due
to the strong interaction between the dog, shepherd
and flock animals. Using ducks instead of sheep al-
lows us to experiment on a conveniently small scale,
in a controlled indoor environment.

In order to successfully exploit the behaviour inher-
ent to the animals, a model of the likely reaction of the
flock to the robot vehicle must be constructed. Such
a model can be built using a rule-based solution to
provide a control strategy for the robot [5]. However,
whilst this provides a simulation of animal flocking
that is visually similar to the real animal behaviours,
it is argued that a model learned automatically from
observations (in terms of image sequences), will pro-
vide additional information of the real environment
that a rule-based approach would not be capable of
encapsulating.

2 Method

In describing the behaviours of the animals, we con-
sider modelling the location and velocity of both the
flock and the robot, together with the flock shape. The
flock is modelled as a whole, not as individual birds.
This is due to the poor resolution obtained when fit-
ting the whole environment of the animals within the
image frame. The flock and robot move within a cir-
cular arena, eight metres in diameter (see Figure 1).

Image frames are subtracted from a pre-learned
background image, significant regions extracted and



Figure 1. A typical image of the arena.

then subjected to morphological smoothing. This pro-
vides a segmentation scheme for the flock as a group.
The robot can be found by a high-contrast black and
white motif placed on the top of the vehicle; the design
also enables us to determine the robot’s orientation.

The shape of the flock is also of interest, because
it represents behavioural traits of the animals; for ex-
ample, a long elliptical flock shape indicates panic as
the animals flee from the robot predator. The shape
can be modelled by using the outline of the segmented
flock region as the basis for a Point Distribution Model
(PDM) [6] to reduce the dimensionality of the shape
data.

By combining the locations of the flock and robot
with the appropriate principal shape parameters of the
PDM, a scene vector x can be constructed for each
frame in an image sequence.

The model of animal behaviour is a representation
of the spatio-temporal patterns of the animals within
their environment, represented for time ¢ as the condi-
tional probability p(X¢41|X¢, Xe—1y...,X¢—n), allowing
the implicit generation of plausible future motions and
appearance changes given recent observations.

To estimate this conditional probability density
function (pdf), a state-based approach is used where a
temporal sequence is considered in terms of the sym-
bols observed (the feature vectors) and the context in
which they appear. Thus the pdf becomes dependent
on the current feature vector x; and a representation
of the contextual history H;. To achieve this, a neural
network architecture is used as in Figure 2. Two com-
petitive learning networks [7] are connected by a layer
of leaky integrators [8].

The symbol network is used to perform vector quan-
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Figure 2. The approach used, represented as a
network architecture

tisation on the space of the input scene vectors, x;, ef-
fecitively clustering the features into a set of M symbol
states.

The outputs of the symbol network are connected
to a layer of leaky integrators. Each integrator is es-
sentially a decay function: the winning symbol out-
put (according to the competitive learning algorithm)
causes the associated integrator value to rise; when the
symbol output no longer wins, the integrator tails off
slowly over time. In this way, by examining at time t
the relative values on all the integrators, H; , a notion
of the order in which previous symbols were observed
is obtained.

The context network performs vector quantisation
upon the space of the leaky integrator values, but mod-
ified so that the next symbol output is associated with
the previous integrator state. The effect of this is that
an observed leaky integrator representation of history
H; produces a high response for the next symbol in
the sequence, X¢.;. The inclusion of a feedback loop,
similar to that of [9], makes this association implicit,
and enforces that the estimated probability of state at
a given time is dependent on both the currently ob-
served symbol as well as the recently observed history.

This approach is similar to that of Johnson and
Hogg [10], who use a comparable architecture to model
human trajectories in order to monitor typical and
atypical events. Our approach improves on this with
the inclusion of the feedback mechanism to enable im-
plicit prediction of future trajectories without the need
for an extra learning phase. Full details of the method
used to train such a model are given in [11].

3 Evaluation and Results

The network is trained on a set of 20 sequences that
represent typical behaviours of the animals. Each se-
quence consists of between 400 and 1200 frames, with
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Figure 3. Results of prediction in comparison
to actual flock path, (top) for a sequence used
to train the model and (bottom) for an unseen
path

each sequence beginning at different positions within
the arena.

One of the principal aims of the approach taken is to
be able to present partial information to the model in
order that the most likely corresponding missing data
is obtained, for instance presenting a known robot lo-
cation and generating the most plausible location for
the animals. Figure 3 shows typical qualitative results
of prediction, using the trained model. The path of
the robot from a sequence is presented to the network,
and the corresponding predicted path of the flock is
shown. For both training sequences and unseen paths,
it is observed that the predicted behaviour closely rep-
resents the original path.

A more suitable method of evaluation can be
achieved by comparing the predicted sequence of sym-
bol states (obtained by the maximum likelihood valued
context output) with the actual symbol states that a
known sequence passed through. Figure 4 shows the
percentage of incorrectly matched states against the
number of states ahead predicted. For comparison the
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Figure 4. State mis-classifications between pre-
diction and actual sequence
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Figure 5. Average distance error between pre-
dicted and actual paths

results for a simple Markov chain are also presented,
this being modelled as the one-step transitional prob-
abilities between symbol states, again with the max-
imum value probability being chosen. It is observed
that the behavioural model produces better results
than the Markov process indicating that the histori-
cal evidence is producing a better prediction decision.

In the above evaluation, however, it is conceivable
that when a mis-classification between predicted and
actual state occurs, the (wrongly) predicted state lies
close to the original state in the real feature space.
Thus Figure 5 shows the average distance error be-
tween predictions and real sequences. The minimum
error distance of approximately 50cm occurs due to
quantisation and calibration effects. It is noted that
the model performs very well in comparison to the
Markov chain, which diverges greatly from the actual
location as time increases. The error distance increases
also over time, but only by around 50cm over 30 frames
(approximately 3 seconds), which is the diameter of
the robot,



4 Future Work and Conclusions

The general framework of the model to predict the
next state given current information (in terms of the
observed symbol and temporal context) lends itself
well to Isard and Blake’s CONDENSATION [12] algo-
rithm, and future work concerns the incorporation of
the model into this tracking paradigm. Heap and Hogg
[13] describe how a Markov chain between areas of
shape-space can be combined with CONDENSATION to
good effect, and since the results presented here show
a distinct improvement over the kind of Markov pre-
dictor used, it is reasonable to expect the presented
model will provide a stronger tracking mechanism.

The approach taken also has potential for provid-
ing an automated control strategy for the robot itself,
since the model inherently predicts not only the path
and shape of the flock, but also of the robot. A goal
location for the flock can be chosen, and a path of
maxmimum likelihood from the current position to the
goal found. The corresponding predicted robot path
represents the best path for the robot to follow if the
ducks are to be successfully herded to their goal.

In conclusion, this paper presents a machine vision
application where animal behaviours are learned au-
tomatically from image sequences. A model of such
behaviours proves essential in this unique robot sce-
nario - using an autonomous vehicle to herd animals
to a goal. The method for learning behaviours is novel,
and provides an approach which is more appropriate
than rule-based alternatives. Suitable extensions to
the work are discussed, illustrating the applicability of
the model to the tasks of tracking and control.
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