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Abstract 
A variational principle which (1) 
accommodates a deforming signal without 
an explicit model, and (2) provides a 
confidence measure for its result, is 
suggested for signal flow calculations. 

Motivation 
It is well known that a translating pattern 
can be represented as a function I(x-vt). 
Elementary differentiation then yields the 
identity ( V  + v. 3/3t)l= 0, well-known in the 
vision community as the brightness 
constraint equation[2]. For a 1 -dimensional 
domain x, the equation provides a unique 
solution for the (scalar) velocity v at every 
point, but no means of verifying to what 
extent the actual behaviour of the pattern 
is described by I(x-vt). For higher 
dimensional domain x, even this limited 
achievement vanishes and we have to 
consider second derivatives. It can be 
shown, again with little effort, that (v,l) 
forms the null space of the Hessian H of I ( 
H,, r 321/3xi3xj ; x,,xj range over x,t). This 
provides both v, and via the smallest 
eigenvalue h, a cross-check on the validity 
of the form I(x-vt). In practice, non-zero h 
could arise from noise in the data, 
deformation of the pattern (i.e., deviation 
from the presumed functional form), or 
both. If, as in most visual image 
sequences, the latter possibility cannot be 
ruled out, there is no way of uncoupling the 
two effects in the absence of knowledge of 
the specific form of the deformation. 
Modelling the deformation introduces extra 
parameters and the attendant risk of 
overlunder-modelling. 

A variational principle, that of minimum 
curvature on the surface I(x,t), offers a 
way out. It leads to the generalised 
eigenvalue problem Hyr = AGyr, where G 

I + ( V  I) ( V  I) (i.e., Gii = tiii + li I, ). 
Eigenvectors yr specify the arc direction 
and h2 the curvature value of the stationary 
solutions, known as geodesics[8,9]. This 

does away with the assumption of the 
special functional form I(x-vt). It can be 
shown, however, if I(x,t) is of the form I(x- 
vt), that the problem possesses a null 
eigenvalue and that v=(v, 1) is the 
eigenvector belonging to it. This variational 
principle thus subsumes translation as a 
special case and is therefore a possibly 
useful generalisation of "flow" calculation. 
The formalism accommodates any 
deformation of the signal pattern 
automatically. 

Background 
It is often desirable to be able to compute 
optic flow at every point in an image 
sequence [I], rather than at just some 
isolated feature points (corners and edges) 
over whose locations and density the user 
has very little control. Some applications 
(for example the detailed 3 0  structure of 
the viewed surfaces) even require the 
dense flow information. Many methods 
already exist in the literature, some are 
differential [2-51 while others involve 
Fourier [6] and other [7] transforms. We 
propose a differential scheme invoking a 
variational principle, that of minimum 
curvature [8, 91, suggested above. 

This suggestion is motivated by the desire 
to free the interpretation of the temporal 
behaviour from an explicit model fitting 
paradigm (such as a translating pattern) in 
favour of a variational principle which at 
the same time automatically reproduces 
the model results when appropriate. An 
advantage of employing a variational 
principle is that it circumvents 
over/underlmis-modelling of the situation. 

Algorithm 
The problem of finding the arc direction 
with minimum curvature comes down to 
solving the generalised eigenvalue/vector 
problem: Hyr = AGyr, where H r ( V V  I) 
(i.e., Hi,= lii), and G r 1 + ( V  I) (VI )  (i.e., 
Gii = tiii + I, I, ) are the hessian and the 
metric matrices respectively, and yr = 



(v, I)~. The solution with the smallest Ihl is 
sought. Collapsed signal domain 
dimensionality (e.g. a long I D  edge) is 
detected and the null component is 
prevented from contaminating the solution. 
The algorithm is structured thus: 

i f  [ant  I (V  01' I < E ~ ~ ~ ,  or < I (V  412, 
implies no motion, hence v = 0. 
Else, 
Rotate H and V I in the spatial 
subdomain so as to diagonalise H in 
that subdomain 

Every small eigenvalue 
characterises a collapsed domain 
dimension 

If a small eigenvalue (relatively or 
absolutely) - e.g. H small, 

XX 

set the corresponding row and 
column as well as the component 
of V I to 0 - i.e., Hxl = Hlx = 0 and I, 
= 0. This makes the null 
component ineffectual. 
and the eigenvalue itself (the 
diagonal) to a large number - i.e., 
Hxx = LARGE which prevents the 
redundant direction from being 
selected below. 
Hessian now has reduced 
dimensions, augmented with a null 
row and column (except for the 
diagonal) corresponding to the 
dummy dimension 

Construct G (from V I) and solve 
H.(v, l)T = hG .(v, l )T in the full domain. 
If Ihll 5 Ih21 5 Ih31, then lhll determines 
the minimum curvature and the 
corresponding eigenvector (v, 1) 
normally yields the velocity v: 

with great (~100%) confidence if 
Ihl l/lh31 <<I and Ihl l/lh2 I << 1 
medium (r5O0/0) confidence if 
Ihll/lh31 <<I but hl G -A2, implying 
two equally likely solutions 
(recalling that only Ihl matters) 
and no confidence if hl z h2 
, implying infinitely many equally 
likely solutions on account of 
degeneracy 
the confidence refers to the 
uniqueness of v (or the 
eigenvector), not its numerical 
value. 

(The numerical uncertainty depends 
on data measurement and 
discretisation errors, derivative 
estimation errors and the consequent 
errors in eigenvector estimation.) 

Occasionally, the eigenvector 
belonging to hl has a negligible 
time component, giving 
ridiculously high velocity. While 
mathematically correct, such a 
solution is rejected on physical 
grounds in favour of h2 and its 
eigenvector. The confidence level 
is reassessed by comparing h2 
now with h3. 

Results 
It is instructive to consider a signal I(x,t) in 
l-dimensional domain x because it can be 
readily visualised. Suppose that I(x,t) 
traces out an ellipsoid: + (~115)~ + 
(t/28j2 = 1, PO (to keep it single-valued). 
This is a deforming pattern without 
translation. Figure 1 shows the signal at 6 
evenly spaced time frames t l-t6 and the 
trajectory vector (Fx,FI) at several points 
along the curve at time frame t5 (t = 15) 
for (a) the brightness conservation, (b) the 
hessian, and (c) the geodesic flows; FI  in 
(b) and (c) being accurate through second 
order in Fx, Ft. The flow converging 
towards the centre is the most intuitive. 
Figure 2 displays the same information for 
the ellipsoidal surface rotated by 0.5 rad in 
the x-t plane. The signal at any time t 
represents an oblique slice of the ellipsoid, 
with its centre now translating. This 
illustrates a deforming pattern with 
translation. The centripetal flow appears to 
accord best with intuition. 

Good results (using the error criterion of 
Barron et a1 [I]) are obtained with real as 
well as synthetic imagery before post- 
processing. 

The geodesic optic flow appears to be 
insensitive to constant spatiotemporal 
intensity gradients across image 
sequences. This is illustrated with an 
example (figure 3) in which the brightness 
of the translating image rises by 1 grey 
level every frame. This insensitivity 
provides some protection against small 
changes in scene illumination, e.g. 
displacement and/or dimminglbrightening 
of the light source(s). Changing intensity 
(st. F21 is smallest) is associated with the 
geodesic flow. In contrast, the brightness 
constancy governed flow preserves the 
intensity along the flow path, and so must, 
in general, effect a different path. 

The geodesic principle and algorithm 
clearly apply to signals in domains of any 
dimensionality (not just 2 as in images). 
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geodesics and the optic flow is 
acknowledged, it becomes possible to 
pass from framewise knowledge of the 
flow field to tracking individual motion 
trajectories over several frames by 
integrating the corresponding Euler- 
Lagrange equation. These trajectories 
couple to each other via the surface terrain 
and its derivatives. Equally, a dense set of 
geodesics could be propagated in time to 
predict the as yet unseen terrain or to fill in 
missing parts thereof. Since the 
trajectories mutually interact they evolve in 
a self-consistent manner. This should 
make the predicted images nontrivial and 
interesting. 
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Figures 
FIGURE 1: (left) signal values at 6 evenly spaced time frames t l- t6 for an ellipsoidal signal 
surface whose axes are aligned with the coordinate axes, and, (right) the flow vector (dx,dl)ldt 
at several xvalues along the signal curve at time t5. 
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FIGURE 2: (left) signal values at 6 evenly spaced time frames tl-t6 for the ellipsoidal signal 
surface of fig.(l) but with axes rotated by 0.5 rad in the x-t plane, and, (right) the flow vector 
(dx,dl)ldt at several x values along the signal curve at time t5. 
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FIGURE 3 Top row Uniformly translating and brightening pattern (left). Reconstructed (right) 
image with geodesics. Middle row Flow vectors from Horn & Schunk's algorithm (courtesy 
Barron et al [I]) without (left) and with (right) brightening (note the patterned disturbance). 
Bottom row Flow vectors from geodesics without (left) and with (right) brightening 
(unchanged, apart from mainly aliasing related glitches in both cases). 




