
MVA'98 IAPR Workshop on Machine Vis~on Applications. Nov. 17-19. 1998. Makuhari, Chiba Japan

11-3
On the Synthesis of a Controller for Handling Borders in Systolic Architectures

for 1-D Discrete Wavelet Transform

M. Ferretti, and D. Rizzo
DIS - University of Pavia, Italy

{ f e r r e t t i , r i z z o) e e l z i r a . un ipv . it

Abstract
In this paper we describe the control subsystem of a

systolic architecture that implements the 1-D discrete
wavelet transform (DWT) on the basis of the Recursive
Pyramid Algorithm (RPA) and that correctly manages
the border problem adopting a periodic extension
strategy to obtain a perfect reconstruction of the signal.
Usually, the proposed architectures for DWT (either 1-D
or 2-D) assume a zero-padding extension.

Periodic extension of the input signal allows to set up
a new algorithm (PE-RPA) that correctly recovers the
input signal without additional computations. A
detailed analytical description of this algorithm shows
that a certain amount of control is mandatory, to have
the underlining systolic structure perform the 1-D DWT
computations correctly in time.

In this paper, we show the design of the controller
required for such a scheduling. The methodology used
for such a design is a VHDL RTL description, with the
subsequent optimised synthesis. The preliminary
results show that the overall complexity of the controller
compares to that of the systolic architecture in the case
of a 10 stage filter (L=10) with a 20 bit data
representation extended to 36 bits for multiplication.
The dependency of the controller on the input signal
size N is logarithmic, since the local memory fbr
handling borders is O(L IogN). The overhead hidden
within the handling of borders is clearly non negligible,
and must be taken into account.

The problem of borders in wavelets
In this paper, we address the VLSI implementation of

the I-D Discrete Wavelet Transform [1,2], and we
firther delimit the scope of the analysis to orthogonal
wavelets. The purpose of this work is to highlight the
VLSI cost of correctly handling the border problem, that
arises in all discrete transforms when applied to finite
length input signal. Among the best VLSI
implementations of the DWT are those based on
systolic implementations [3-51 of the Recursive Pyramid
Algorithm [6]. This algorithm is based on the
assumption that the computations of the various levels
of the transform-are scheduled as soon as possible, that
is when enough values from preceding levels are
available to initiate a new convolution.

The systolic arrays derived on the basis of this
assumption have 100% efficiency and minimal output
latency. Unfortunately, all this works well if one ignores
the effect of finite length of the input signal and assumes
that it is zero-extended when the convolution kernel
embedded into the systolic array requires data that are
not available. The architectures proposed so fbr fix
DWT ignore this problem.

In a preceding paper [7] we have shown with analytic
detail the effect of ignoring the border problem and two
possible solutions, the former based on an extension of
the RPA algorithm that computes more coefficients and
restores efficiency within the systolic array by
compressing the last stages of computations at each

level; the second solution extends periodically the input
and guarantees the perfect reconstruction while
computing exactly N coefficients, the theoretical
minimum [8]. We refer to this solution as to PE-RPA.
Both solutions prevent using the bare RPA schedule,
that must be abandoned. In the following, we describe
briefly the PE-RPA algorithm, and then go into the
detail of the architecture required to support it. While
the major component is still the systolic datapath fa
wavelet convolution, the irregular timing necessary to
handle the periodic extension requires fiuther hardware
resources: more memory and a modified controller. We
have obtained a synthesized version of both starting
fiom a VHDL description. The comparison with the
systolic datapath shows that the mandatory handling of
borders requires roughly as many hardware resources as
the systolic array, at least for convolution kernels of
reasonable size.

The Periodic Extended RPA
The equations to compute a I-D DWT, using

orthogonal wavelet filters of length L, are the following:
L- l

a, (n) = x a ,-, (2n - m)h(m) (1)
m= 0

where aJ(i), d,(i) represents the ifh approximation and
detail coefficient at level j; h(),g() are the low and high
pass L-tap filters obtained from the chosen wavelet; a"()
is the N-sample input signal; N,= N 2-i is the number of
wavelet coefficients in level j. Since the computations
of either set of coefficients have same structure, the
analysis can be done considering only the
approximation coefficients a,(i). We consider the case
with N power of 2 and with the orthogonal filter length
L even.

Of the three possible ways to extend the signal (at the
beginning, at the end, or symmetrically at both ends),
only the extension at the end of the input sequence is
viable for an on-line implementation, since the other
two introduce immediately a long latency. Due to the
structure of the wavelet convolution, that embeds a
downsampling by two, the number of values required for
the extension is exactly L-2, for a filter with L taps.

Since we consider a border extension on one side
only, the first wavelet coefficient a,+ ,(O) is obtained by a
convolution with the complete wavelet filter placed over
the first L values of level j ; so, the last coefficient
u , + ~ (N , + ~ - ~) is computed using the last two values from
level j, and L-2 more values, namely aJ(0), a,(]) .. a,(L-
3) (see Fig. 1).

The equations for the decomposition and periodic
extension of PE-RPA are the following:

L-l

d, (i) = a,-, (2i + L - 1 - rn)g(rn)
m = o

(k) = a, - 1 (k - N,-,) Per. Extension (5)
S J S l o g N, O S ~ S N ~ - I , N , . / i k ~ ~ , . / + ~ - 3

The reconstruction within PE-RPA requires that the
signal be interleaved with zeros, as usual in wavelets,
and that it be also periodic extended at the lefr side with
L-2 values, including zeros.

In contrast to the bare RPA, the PE-RPA algorithm
has a fairly complex activation sequence of the
operations to be carried out in the underlining systolic
array. In the following, we briefly hint to the result of
the timing analysis, in order to show that a controller is
indeed necessary.

We assume that the systolic data path carries out a
multiply-and-add operation in a clock cycle; the systolic
arrays multiplexes the computations of the convolutions
of the detail and approximation signals. Furthermore,
thanks to the downsampling by 2 typical of sub-band
processing, the array interleaves the computations
necessary to produce the first level of the transform to
those required for the upper levels. This is the basic
strategy in RPA as well. The PE-RPA carries out the
overall transform in two major phases: i) handling of the
finite length input sequence; ii) residual processing after
the whole input has been read.

During the first phases, the computations that generate
coefficient i of level j are scheduled within the systolic
array at time T,, as follows:
A] =A,-, + ~] (L - I) + ~ J - ' = (~ L - I @ J - (2 ~ - 1) (6)

T,, = A, + 2/+li (7)
where AJ is an initial latency at each level, due to the

convolution mode depicted in Fig. 1.
The first phase terminates at time T* :
T* = 2 (N + L - 2) - 1 (8)

systolic array. It is the task of the controller to compact
the remaining computations; the simplest way to do so
is to complete the transform on a level by level basis.
Fig. 2 shows the overall schedule of PE-RPA for an
input signal of length N=16 and a filter kernel L=4.

The activation times for the computations of the
residual coefficients of levels j<j* are.

(9)
where N, - K (j) l i < N, and j<j*.
Analogously, the activation times for levels j 2 j * are:

(10)
w h e r e O I i < N, and j* I j 5 1 0 g ~

Description of the architecture
In this section, we highlight the overall structure of

the modified architecture that computes the DWT of a 1 -
D finite signal, managing borders with PE-RPA. As a
reference, we use the systolic architecture described in
[4], with proper modifications to handle timings and
data distribution. Fig. 3 depicts the major components
of the architecture. In the following, we describe each
component and analyze in a more detailed way the
complexity of the new controller and subsequently a
possible implementation given in VHDI, description.

The main components are: i) a systolic array of L
Processing Elements (PEs); ii) a controller; iii) a set of
L local memories for storing intermediate approximation
coefficients; iv) a border memory; v) a PA memory,
used to store partial approximations results during the
second scheduling phase.

,-- a,, l(N,. /-I)

level j Ia,(0)l . , (I) I a,(2) 1 4(3) 1 ...'"...ul ai(Ni-2)I a,(N,-l)l=] ---.. -, ,... - - - _ - - - _ _ _ _ _ - - - - - - - -

Fig. 1:Starting and stopping convolution, for the first and the last coefficient computation over a level,
with right side periodic extension, and L=4.

Once all inputs have been read in and processed, not
all the transform has been computed. The coefficients yet
to be generated are split into two sets: i) coefficients that
belong to levels for which the computations have been
started, but are not complete; ii) coefficients of levels for
which no computation has been scheduled yet. We
denote with j* the discriminating level, that is the first
one for which no coefficient has been produced; also, the
number of coefficients not yet produced in level j is
denoted with KO). Details on the analytic derivations of
j* and KO) are available in [7]. This second phase will
be denoted as PA phase in the following.

The schedule of equation (7) cannot be applied to this
residual sets of coefficients, because it would issue
operations with much too low a frequency within the

The systolic array supports the convolutions and the
downsampling required to produce both the detail and
the approximation signals. Each PE is connected to its
right and left neighbors and to the local memory. The
left-to-right path canies the primary inputs forwarded to
the array from the controller. The path fiom local
memory carries elements from already computed higher
level coefficients. The right-to-left paths carry: i)
partially accumulated results, which eventually get to
the controller and are dispatched either to local memory
(approximation signals) or to the output (detail signals);
ii) control tokens, generated by the controller and
described later, which are the state information f a
establishing the processing mode of the PEs. Each PE
performs a synchronous multiply-accumulate operation

.,,,. . output resclj~duled. - -

Fig. 2: Example of PE-RPA scheduling with input length N=16, L=4 and right side periodic extension; j-=3.

on inputs depending on the state it receives fiom its memory. The sequence of levels is generated by the
right neighbour. In every case it transmits the input controller during either scheduling phases.
from left to right, even when it computes higher level The description of how the controller discriminates
coefficients. The timing of computation is such that the between the first phase and the PA phase is deferred to a
array achieves 100% efficiency: the primary input is fd subsequent section. We only anticipate that the
from the controller with 50% throughput; the controller also manages the extra memories, denoted
accumulated output is produced at the leftmost PE with with PA memory and Border memory, to be described
50% throughput. Indeed, the systolic convolution on a shortly.
single data stream (approximation signal) coupled with The local memory is arranged into L modules, each
the downsampling by two yields 25% efficiency, thus (LogN-I) words in size. New data (approximation
making each PE perform useful work once in four clock signals for the various levels) are written alternatively
cycles. The remaining three clock cycles are used into the first two memory modules from the controller.
profitably by scheduling the PE for the detail The paths from module i to module i+2 are required to
convolution on the primary input and for the support data shifts for convolutions in each level: a
approximation and detail convolutions on a higher level value in level j at position i (in PE,) will be used for a
data. This restores the efficiency to 100%. convolution in the same level at position i+2 (PE,+*)

The controller determines the scheduling of wavelet because of the subsampling. It is convenient to set-up a
coefficients computation within the array by forwarding path outside the array of PEs, to preserve anay
control tokens to rightmost PE (PEL.I). Each token regularity. During the first phase of operation, t57',
consists of a <state,leveb pair. Each PE goes through a with reference to memory contention, the value read at
sequence of four states: PE in state LP, will be written in a PE in state LPl; the
LPI: read from input data line and perform 1" level low receiving memory module is therefore available, since it

pass computation (filter h, approximation signal); is not used by the local PE. Actually, in a limited set of
HPI: re-use input data previously read to perform 1'' cases arising when processing levels j>j* and at times

level high pass computation (filter g, detail signal); following P, there is indeed contention due to fiuther
LPj: read from local memory data line and perform low shifts of data that are required and that can be scheduled

pass computation for level j>l (filter h, during states LPI. This contention can be eliminated
approximation signal); because the item being written into memory is also the

HP,: re-use local memory data previously read to item to be read by the PE.
perform high pass computation for level j>l (filter g, The P A memory module is used to store coefficients of
detail signal). levels j > 1 that cannot be stored in the first two local

At the begin of operations, when the array reads in the memory modules during the PA phase. To keep the
first primary input, it must be in the following management of this new memory module as simple as

possible, the number of memory locations can be set
PA Border to 2(L-I). Indeed, L-1 is an upper bound to the

number of residual coefficients to be scheduled for
each level in the PA phase; using twice as much
locations allows for a simple double buffering
scheme. A detailed analysis shows that this tigure
could be decreased at the expense of a more complex
control policy within the controller.

The border memory is used to manage border
extensions for each level; it is written when the anay
reads in the first L-2 primary inputs or when it
produces the first L-2 values for a generic level j ; it

I is read when the array computes the last (L-2)/2
L - l values of level j+ I . It can be therefore set up as a one

Fig. 3: Systolic architecture to perform DWT, PE-RPA port memory of (L-2) lo@ words.
(L=4) . The changes to the basic architecture (RPA) consist

situation: in a larger memory and in a more complex controller.

PE : 0 1 2 3 4 5 As to memory, the overall amount of words necessary is
L(1ogN- 1)+2(L- l)+(L-2)logN; in most practical cases,

State: LPj HPj LPI H P I LP, HP, L -logN, and the dimension of the memory can be
When in state LP,, the PE uses the token value level approximated to 2L IogN, that is twice as much as in

to get the correct address for reading from the local the basic RPA. The actual cost of the extended

architecture is hidden within the controller, which has a level enabler: when it has reached the L-th state, it
more counters and which drives more control points. enables the current level (initially the first), allowing the

The breakdown of the controller
level sequencer submodule to start scheduling the-fust
level computations. It then starts counting for the next "

Figure 4 shows the partitioning of the architecture af level, and-SO on.
the controller. The external control signals are reset and The level sequencer is a set of module-2 counters, that
clock (not shown, because shared by all of blocks) and schedules a level computation for each level j < j * that
start, end-input. has been enabled (that is, for which the first L elements

The overall operation of the system consists of an ofthe previous level have been already computed). The
initialisation and of a processing phase, The module-2 Counter takes into account when a new couple
initialisation begins when the external input reset is of previous level elements can be used to perform a new
asserted; the controller sets up the array by propagating computation. A point worth noting regards the need for
the <state,level> tokens and signals that the operations shifting data, in local memories. To better understand
can begin by asserting the start output when the when Such Situation occurs, we can consider the
propagated tokens have reached P E ~ . The unit following example: with L=10, when the first 14 input
starts sending the input data at every other clock cycle data samples have been read, the first level computations
and closes the processing phase by asserting the input have already been enabled by the module-10 counter and
signal end-~nput. the level sequencer has scheduled the first level

The PE-RPA controller is partitioned into the coefficients a/@) a/(/) . These values have been written,
following modules: state sequencer, scheduler, PA by the datapath interface (which will be described later),
scheduler, data path interface, border manager. Each af respectively to PEI and PEo local rt~emories. Since a
these modules can be further decomposed into sub- couple of values is not sufficient to allow a second level
modules, respecting the hierarchy shown in Figure 5. computation, the second level is not enabled, but there

is the need to make these couple of values shift along
The state sequencer the local memories, in order to get into the correct PE
This module is activated by the reset signal and position, when the second level will be enabled (this

produces the sequence of states used by the PEs within values reach and P E ~ - 2 1

the array. The period of the sequence is 4 and each item respectively). In fact, if it doesn't happen, the
is and output at every cycle. ~t is the ~0mp~fat ionS of the next couple of first level coefficients
responsibility of the Scheduler to make sure that enough a/(3)7 would rewrite the first c o u ~ l e , causing a
clock cycles are counted (and consequently, enough state loss data. the level sequencer signal that a
tokens generated and forwarded to the array) before the second level shift is needed, although no second level
first input is used. already described, the state value should be computed. Therefore the controller has
sequence allows to intermingle the computations of the send PEs another
approximation and detail signals within the array, by Level-enabled, that in this case has to be set to false,
having each PE reuse each input item twice in while it is true for the enabled levels.
consecutive states for the same level. Glue logic and a clock divider complete the Scheduler

in order to realise a hierarchy priority
mechanism for level scheduling so that when
two enabled levels can compute a new value, the
lower level takes precedence.

S Y S T O L I C
The PA scheduler

- I The other scheduling module. PA Scheduler,
is activated after T* (actually, a little before,

' because we have to consider the latency to
propagate from the controller to PEo in the
systolic array). It generates the PA scheduling
sequence of levels as previously described.

The functionality is the same as that of the
Scheduler, but there exists a subtle difference in
managing control. Indeed during PA scheduling
there is the need to manage borders extension;
so when a level computation is reaching the last
(L-2)/2 coefficients, the PA scheduler should
signal the need for border management and
border data. Since the state of datapath is

Figure 4: PE-RPA controller's partitioning.

The scheduler
This is the controller component that generates the

sequence of control information to be used by each PE.
That is, it generates for the first scheduling phase
(r < P), the correct sequence of levels in the <state,
level> pairs to perform PE-RPA computations. Since it
has to take into account the initial latency for each level,
it is composed by a module-L counter. This component
starts counting the first L input data samples and acts as

delayed with respect to the actual scheduling,
the controller makes use of a L-clock delay line

to transmit the request for borders data to the Border
Manager. There is also the problem of managing data
shift for the subsequent level. We use states LP,, to
perform this task when needed

The data path interface
The functions carried out by this [nodule can be

subdivided into two major operations: forwarding the
input samples to the array and splitting the output into
the detail signal, which is actually sent to the outside
world, and into the approximation signal, which is kept

within the system for higher level computations. The
handling of this stream of data can be further broken
down into two major phases: in the f rs t one, the
approximation is stored directly and alternatively into
the local memories of the first two PEs; after T*, the
output from PEO has to be stored into the PA memory
for proper reuse when the computations of the level
using them will be scheduled. The 2(L-1) memory
locations that make up the PA memory allow for a
straightforward embedding of this memory within the
data path interface module, which is the only module
that interfaces with it; control signals to operate on the
PA memory are therefore best kept local to data path
interface. During the second phase of operation, the data
path interface receives data from the border manager,
precisely when the last coefficients of each level are
produced. Data from the border manager are required
also in the first phase, just before T*, that is when the
first level computations are terminated.

The end-input signal is used to discriminate between
the first and the second phase of operation; it triggers a
sequence of internal control states that are subsequently
conditioned also by signals from the PA scheduler. The
data path interface contains 2 internal registers each log
N-1 bit in length; one keep tracks of the destination
memory for each level, and toggles the level bit
identified with the level token emerging from the array,
thus alternating between PEo and PEI; the second
register stores an activity bit that is set when a data item
is stored into the corresponding level for later use by
the array, and is reset when the array output carries a
token showing that the data item has been used.

Border Manager
The main purpose of this module is to store the first

L-2 coefficients produced at each level, for later reuse
when extending the convolution at the end of the same
level. To do so, a border memory is required,
consisting of (L-2) logN words. This module interfaces
directly with the input, because the first L-2 data have to
be stored directly into the border memory, for the
convolution on the input (level 0); the remaining data
are received from PEo, with its whole state information.
Data stored into the border memory are extracted by this
module upon request from the external (end-input is
asserted) or from the PA scheduler (end-level asserted,
meaning that in a level the last coefficient that does not
required border data, has been scheduled); a couple of
data is forwarded to the data path interface for storing
into the local memories with two consecutive states on
the negative clock transitions, in time for the data path
interface to sample them on the following positive clock
transition.

The VHDL implementation
The PE-RPA controller has been described in VHDL,

adopting a mixed behavioral and RTL style of
description. The leading criteria for partitioning the
controller is based on functionality and feasibility of
synthesis. Actually, the resulting structure described in
the following is the outcome of a synthesis process that
has forced an increased depth in the hierarchy, whenever
the complexity of the synthesised design unit was too
L:,L

been furthermore decomposed into sub-components
when necessary. Figure 5 reports the hierarchy
partitioning and the association between functions and
design entities. As an instance, the state sequencer is
described as a process in the top-level entity;
analogously the scheduler is not described as a separate
entity but its components are directly instantiated inside
the top-level. One of the most involved module is the
border manager. It has been described with 3 sub-
entities: one to get and store the first L-2 values for each
level (data input comprised), one to manage the sending
of input data stored, and one to manage the sending of
higher levels coefficients to the data path interface
(further decomposed for levels j<j* and j >j*).

Processes and design entities
Many entities are composed of a certain number of

cooperating processes, which trigger each other and
correspond to operations that are mutually exclusive.
For example, the data path interface has been described
by four processes, each of them corresponding to a
particular situation: one process reads input data and
forwards it to the array (reading also border data to
conclude the first level computations); one reads output
values produced by PEo, that need to be stored in the
local memory of PEo or PE,, during the first scheduling
phase; one concludes the second level computations,
sending also border values to the local memories and
storing the computed coefficients into the PA memory;
the last process manages the output produced, the
sending of data to local memories and the receiving of
border values, during the second scheduling phase till
the end, making a distinction between levels over and
below j* .

Memory inference
We decided to implement the memory required by the

controller using registers rather than RAM components.
This choice is justified by the little amount of memory
needed, and the requirements of access pattern. This
choice is valid also for the PE local memory, where we
may need read and write accesses to different (but in
some cases, to the same) addresses in the same local
bank memory. The depth of the word line is 20 bits and
the total amount of additional memory, with respect to
the reference RPA architecture, is (L-2)logN + 2(L-I)
words.

The reference description of the PE-local
memory pair

The description of the processing elements has been
made considering a unique entity which combines the
combinational path (multiplier and adder) with the local
memory. There are three separate processes: one to
manage the local memory, one to manage the operation
based-on input state information and one to samples
input data line, according to clock events.

The local memory has dimension l o o - 1 word and is
realised with latches. The memory is asynchronous:
every time the signal enable-write is raised, the
corresponding data line is sampled and stored in the
address specified. Read operations instead are initiated
synchronously by the corresponding PE; furthermore,
everv time there is a read from a memorv location at

111g11. the data read is shifted and stored intd to the same
The design hierarchy location of the memory of PE,+2.
The basic operations just outlined previously The asynchronous memory is useful to avoid partial

correspond in most cases to a design entity instantiated stalls, during the PA schedule phase, for levels j'j*
in the controller top level entity. Each design entity has with Nj<L-2, since the propagation of data needed from

the previous level over the array of local memories must
be "as fast as possible", in order to get the data into the
correct position for convolution without delays.

The PE has a couple wavelet filter coefficients (low
pass and high pass corresponding to filter position i)
used alternatively, on the base of the state (LP, or HP,)
received. Currently, they are instantiated as constants.

The synthesis results
The design hierarchy just described has been

synthesised using SYNOPSYS Design CompilerTM,
with a target technology library from SGS-Thomson
(HCMOS 0.35 micron).

Table I shows the major figures obtained by the
synthesis of the design units described previously.

The overall constraint used in the synthesis process is
a symmetrical clock with a 20ns period that has been
met everywhere. The choice of this constraint has been
done by considering the speed of the fastest multiplier
available to perform the 36 bits internal product in the
PE (about 10 ns): the other 10 ns have been allocated
considering the broadcast of data read from the local
memories, that could potentially travel from the first
PEo to the last PEL., when computing last levels. This
requirement for a potentially dangerous broadcast
operation is however non critical in practical situations,
since the wavelet transform is hardly carried out up to

equenca Schedul a khedd a I n t d c e Manager

borders

Figue 5: PE-RPA Controllerhierarchy: boxes with k a v y stroke
are ent ities, bubties are processes.

the highest level.
The synthesis strategy has been changed across the

design units; the default structuring and resource sharing
has been used in most cases, except in the data path
interface, where the sharing has been reduced. Boundary
optimisation has been applied to the design units that
embed a hierarchy, such as the border manager.

Currently, the overall hierarchy has not been collapsed
into a single design unit; we expect a certain amount of
further optimisation by this last phase of the synthesis.

The most important conclusion that can be drawn by
the figures shown in table I is the relative complexity of
the PE-local memory systolic array with respect to the
overall controller. In a 10 stage array (L=10), that
supports a fairly large convolution kernel, capable of
handling standard image dimensions (N=512), the area
taken by a PE-local memory pair is roughly 118 of that
of the controller. Stated otherwise, the requirement of
handling borders costs as much a the bare processing for
the DWT convolution, a result that cannot be
disregarded.

Conclusions
In this work we have designed the hardware structure

required to handle the border effect for perfect
reconstruction of a DWT transformed finite signal. We
have shown that the synthesised hardware is comparable
to that mandatory for the execution of the convolution
with a fairly standard kernel. We expect that the
complexity of the controller could be reduced
considerably by assuming that the DWT transform is
not carried out up to the last level; indeed, in some
applications such as image compression, the number of
levels computed hardly goes beyond 3 or 4 in images of
up to 1024x1024 pixels in size.

ACKNOWLEDGEMENT
This work has been partially supported by grant AS1

1996 RS 192. SGS-Thomson has supported the work
through the technology library for synthesis.

References
[l] O.Rioul, M.Vetterli, "Wavelets and Signal

Processing", IEEE SP Magazine, October 91.
[2] G.Strang, T.Nguyen "Wavelets and Filter Banks",

Wellesley-Cambridge Press, 1996.
[3] M.Vishwanath, R.M.Owens, M.J.Irwin "VLSI

Architectures for the Discrete Wavelet Transform",
IEEE Trans. On Circuits and Systems-11: Analog
and Digital Signal Processing, Vol. 42, No.5, pp.
305-3 16, May 1995.

[4] R.Lang, E.Plesner, H.Schroder, A.Spray, "An
effic~ent systolic architecture for the one-dimensional
wavelet transform", SPIE, Vol 2242, Wavelet
Applications (1994), pp. 925-935.

[5] J.Fridman, E.S.Manolakos "Discrete Wavelet
Transform: Data Dependence Analysis and Synthesis
of Distributed Memory and Control Array
Architectures ", IEEE Transaction on Signal
Processing, Vol. 45, No.5, May 1997.

[6] M.Vishwanath, "The Recursive Pyramid Algorithm
for the Discrete Wavelet Transform", IEEE Trans.
on Signal Processing, Vol. 42, No. 3, pp. 673-677,
March 1994.

[7] M.Ferretti, D.Rizzo, "Handling Borders in Systolic
Architectures for I-D Discrete Wavelet Transform",
submitted to IEEE Trans. on Signal Processing,
available as RIDIS-12 1-98, Dip. Lnformatica e
Sistemistica, University of Pavia, 1998.

[8] C.Taswell, K.C.McGill, "Length-Preserving
Wavelet Transform Algorithms for Zero-Padded and
Linearly-Extended Signals", Available at
http://www.toolsmiths.com/papers.shtml

Table I: synthesis results (area expressed in p2),

