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Abstract 
In this paper we describe the control subsystem of a 

systolic architecture that implements the 1-D discrete 
wavelet transform (DWT) on the basis of the Recursive 
Pyramid Algorithm (RPA) and that correctly manages 
the border problem adopting a periodic extension 
strategy to obtain a perfect reconstruction of the signal. 
Usually, the proposed architectures for DWT (either 1-D 
or 2-D) assume a zero-padding extension. 

Periodic extension of the input signal allows to set up 
a new algorithm (PE-RPA) that correctly recovers the 
input signal without additional computations. A 
detailed analytical description of this algorithm shows 
that a certain amount of control is mandatory, to have 
the underlining systolic structure perform the 1-D DWT 
computations correctly in time. 

In this paper, we show the design of the controller 
required for such a scheduling. The methodology used 
for such a design is a VHDL RTL description, with the 
subsequent optimised synthesis. The preliminary 
results show that the overall complexity of the controller 
compares to that of the systolic architecture in the case 
of a 10 stage filter (L=10) with a 20 bit data 
representation extended to 36 bits for multiplication. 
The dependency of the controller on the input signal 
size N is logarithmic, since the local memory fbr 
handling borders is O(L IogN). The overhead hidden 
within the handling of borders is clearly non negligible, 
and must be taken into account. 

The problem of borders in wavelets 
In this paper, we address the VLSI implementation of 

the I-D Discrete Wavelet Transform [1,2], and we 
firther delimit the scope of the analysis to orthogonal 
wavelets. The purpose of this work is to highlight the 
VLSI cost of correctly handling the border problem, that 
arises in all discrete transforms when applied to finite 
length input signal. Among the best VLSI 
implementations of the DWT are those based on 
systolic implementations [3-51 of the Recursive Pyramid 
Algorithm [6]. This algorithm is based on the 
assumption that the computations of the various levels 
of the transform-are scheduled as soon as possible, that 
is when enough values from preceding levels are 
available to initiate a new convolution. 

The systolic arrays derived on the basis of this 
assumption have 100% efficiency and minimal output 
latency. Unfortunately, all this works well if one ignores 
the effect of finite length of the input signal and assumes 
that it is zero-extended when the convolution kernel 
embedded into the systolic array requires data that are 
not available. The architectures proposed so fbr fix 
DWT ignore this problem. 

In a preceding paper [7] we have shown with analytic 
detail the effect of ignoring the border problem and two 
possible solutions, the former based on an extension of 
the RPA algorithm that computes more coefficients and 
restores efficiency within the systolic array by 
compressing the last stages of computations at each 

level; the second solution extends periodically the input 
and guarantees the perfect reconstruction while 
computing exactly N coefficients, the theoretical 
minimum [8]. We refer to this solution as to PE-RPA. 
Both solutions prevent using the bare RPA schedule, 
that must be abandoned. In the following, we describe 
briefly the PE-RPA algorithm, and then go into the 
detail of the architecture required to support it. While 
the major component is still the systolic datapath fa 
wavelet convolution, the irregular timing necessary to 
handle the periodic extension requires fiuther hardware 
resources: more memory and a modified controller. We 
have obtained a synthesized version of both starting 
fiom a VHDL description. The comparison with the 
systolic datapath shows that the mandatory handling of 
borders requires roughly as many hardware resources as 
the systolic array, at least for convolution kernels of 
reasonable size. 

The Periodic Extended RPA 
The equations to compute a I-D DWT, using 

orthogonal wavelet filters of length L, are the following: 
L- l 

a, (n) = x a  ,-, (2n - m)h(m) (1) 
m= 0 

where aJ(i), d,(i) represents the ifh approximation and 
detail coefficient at level j; h(),g() are the low and high 
pass L-tap filters obtained from the chosen wavelet; a"() 
is the N-sample input signal; N,= N 2-i is the number of 
wavelet coefficients in level j. Since the computations 
of either set of coefficients have same structure, the 
analysis can be done considering only the 
approximation coefficients a,(i). We consider the case 
with N power of 2 and with the orthogonal filter length 
L even. 

Of the three possible ways to extend the signal (at the 
beginning, at the end, or symmetrically at both ends), 
only the extension at the end of the input sequence is 
viable for an on-line implementation, since the other 
two introduce immediately a long latency. Due to the 
structure of the wavelet convolution, that embeds a 
downsampling by two, the number of values required for 
the extension is exactly L-2, for a filter with L taps. 

Since we consider a border extension on one side 
only, the first wavelet coefficient a,+ ,(O) is obtained by a 
convolution with the complete wavelet filter placed over 
the first L values of level j ;  so, the last coefficient 
u , + ~ ( N , + ~ - ~ )  is computed using the last two values from 
level j, and L-2 more values, namely aJ(0), a,(]) .. a,(L- 
3) (see Fig. 1). 

The equations for the decomposition and periodic 
extension of PE-RPA are the following: 



L-l 

d, (i) = a,-, (2i  + L - 1 - rn)g(rn) 
m = o  

( k )  = a, - 1  ( k -  N,-, ) Per. Extension (5 )  
S J S l o g  N, O S ~ S N ~ - I ,  N , . / i k ~ ~ , . / + ~ - 3  

The reconstruction within PE-RPA requires that the 
signal be interleaved with zeros, as usual in wavelets, 
and that it be also periodic extended at the lefr side with 
L-2 values, including zeros. 

In contrast to the bare RPA, the PE-RPA algorithm 
has a fairly complex activation sequence of the 
operations to be carried out in the underlining systolic 
array. In the following, we briefly hint to the result of 
the timing analysis, in order to show that a controller is 
indeed necessary. 

We assume that the systolic data path carries out a 
multiply-and-add operation in a clock cycle; the systolic 
arrays multiplexes the computations of the convolutions 
of the detail and approximation signals. Furthermore, 
thanks to the downsampling by 2 typical of sub-band 
processing, the array interleaves the computations 
necessary to produce the first level of the transform to 
those required for the upper levels. This is the basic 
strategy in RPA as well. The PE-RPA carries out the 
overall transform in two major phases: i) handling of the 
finite length input sequence; ii) residual processing after 
the whole input has been read. 

During the first phases, the computations that generate 
coefficient i of level j are scheduled within the systolic 
array at time T,, as follows: 
A] =A,-,  + ~ ] ( L - I ) + ~ J - '  = ( ~ L - I @ J  - ( 2 ~ - 1 )  (6) 

T,, = A, + 2/+li (7) 
where AJ is an initial latency at each level, due to the 

convolution mode depicted in Fig. 1. 
The first phase terminates at time T* : 
T* = 2 ( N + L - 2 ) - 1  (8) 

systolic array. It is the task of the controller to compact 
the remaining computations; the simplest way to do so 
is to complete the transform on a level by level basis. 
Fig. 2 shows the overall schedule of PE-RPA for an 
input signal of length N=16 and a filter kernel L=4. 

The activation times for the computations of the 
residual coefficients of levels j<j* are. 

(9) 
where N, - K ( j )  l i < N, and j<j*. 
Analogously, the activation times for levels j 2 j *  are: 

(10) 
w h e r e O I i <  N, and j* I j 5 1 0 g ~  

Description of the architecture 
In this section, we highlight the overall structure of 

the modified architecture that computes the DWT of a 1 - 
D finite signal, managing borders with PE-RPA. As a 
reference, we use the systolic architecture described in 
[4], with proper modifications to handle timings and 
data distribution. Fig. 3 depicts the major components 
of the architecture. In the following, we describe each 
component and analyze in a more detailed way the 
complexity of the new controller and subsequently a 
possible implementation given in VHDI, description. 

The main components are: i) a systolic array of L 
Processing Elements (PEs); ii) a controller; iii) a set of 
L local memories for storing intermediate approximation 
coefficients; iv) a border memory; v) a PA memory, 
used to store partial approximations results during the 
second scheduling phase. 

,-- a,, l(N,. /-I) 

level j Ia,(0)l . , ( I )  I a,(2) 1 4(3) 1 ...'"...ul ai(Ni-2)I a,(N,-l)l=] ---.. -, ,... - - - _ - - - _ _ _ _ _ - - - - - - - -  

Fig. 1:Starting and stopping convolution, for the first and the last coefficient computation over a level, 
with right side periodic extension, and L=4. 

Once all inputs have been read in and processed, not 
all the transform has been computed. The coefficients yet 
to be generated are split into two sets: i) coefficients that 
belong to levels for which the computations have been 
started, but are not complete; ii) coefficients of levels for 
which no computation has been scheduled yet. We 
denote with j* the discriminating level, that is the first 
one for which no coefficient has been produced; also, the 
number of coefficients not yet produced in level j is 
denoted with KO). Details on the analytic derivations of 
j* and KO) are available in [7]. This second phase will 
be denoted as PA phase in the following. 

The schedule of equation (7) cannot be applied to this 
residual sets of coefficients, because it would issue 
operations with much too low a frequency within the 

The systolic array supports the convolutions and the 
downsampling required to produce both the detail and 
the approximation signals. Each PE is connected to its 
right and left neighbors and to the local memory. The 
left-to-right path canies the primary inputs forwarded to 
the array from the controller. The path fiom local 
memory carries elements from already computed higher 
level coefficients. The right-to-left paths carry: i) 
partially accumulated results, which eventually get to 
the controller and are dispatched either to local memory 
(approximation signals) or to the output (detail signals); 
ii) control tokens, generated by the controller and 
described later, which are the state information f a  
establishing the processing mode of the PEs. Each PE 
performs a synchronous multiply-accumulate operation 
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Fig. 2: Example of PE-RPA scheduling with input length N=16, L=4 and right side periodic extension; j-=3. 

on inputs depending on the state it receives fiom its memory. The sequence of levels is generated by the 
right neighbour. In every case it transmits the input controller during either scheduling phases. 
from left to right, even when it computes higher level The description of how the controller discriminates 
coefficients. The timing of computation is such that the between the first phase and the PA phase is deferred to a 
array achieves 100% efficiency: the primary input is fd subsequent section. We only anticipate that the 
from the controller with 50% throughput; the controller also manages the extra memories, denoted 
accumulated output is produced at the leftmost PE with with PA memory and Border memory, to be described 
50% throughput. Indeed, the systolic convolution on a shortly. 
single data stream (approximation signal) coupled with The local memory is arranged into L modules, each 
the downsampling by two yields 25% efficiency, thus (LogN-I) words in size. New data (approximation 
making each PE perform useful work once in four clock signals for the various levels) are written alternatively 
cycles. The remaining three clock cycles are used into the first two memory modules from the controller. 
profitably by scheduling the PE for the detail The paths from module i to module i+2 are required to 
convolution on the primary input and for the support data shifts for convolutions in each level: a 
approximation and detail convolutions on a higher level value in level j  at position i (in PE,) will be used for a 
data. This restores the efficiency to 100%. convolution in the same level at position i+2 (PE,+*) 

The controller determines the scheduling of wavelet because of the subsampling. It is convenient to set-up a 
coefficients computation within the array by forwarding path outside the array of PEs, to preserve anay 
control tokens to rightmost PE (PEL.I). Each token regularity. During the first phase of operation, t57', 
consists of a <state,leveb pair. Each PE goes through a with reference to memory contention, the value read at 
sequence of four states: PE in state LP, will be written in a PE in state LPl; the 
LPI: read from input data line and perform 1" level low receiving memory module is therefore available, since it 

pass computation (filter h, approximation signal); is not used by the local PE. Actually, in a limited set of 
HPI:  re-use input data previously read to perform 1'' cases arising when processing levels j>j* and at times 

level high pass computation (filter g, detail signal); following P, there is indeed contention due to fiuther 
LPj: read from local memory data line and perform low shifts of data that are required and that can be scheduled 

pass computation for level j>l (filter h, during states LPI. This contention can be eliminated 
approximation signal); because the item being written into memory is also the 

HP,: re-use local memory data previously read to item to be read by the PE. 
perform high pass computation for level j>l (filter g, The P A  memory module is used to store coefficients of 
detail signal). levels j  > 1 that cannot be stored in the first two local 

At the begin of operations, when the array reads in the memory modules during the PA phase. To keep the 
first primary input, it must be in the following management of this new memory module as simple as 

possible, the number of memory locations can be set 
PA Border to 2(L-I). Indeed, L-1 is an upper bound to the 

number of residual coefficients to be scheduled for 
each level in the PA phase; using twice as much 
locations allows for a simple double buffering 
scheme. A detailed analysis shows that this tigure 
could be decreased at the expense of a more complex 
control policy within the controller. 

The border memory is used to manage border 
extensions for each level; it is written when the anay 
reads in the first L-2 primary inputs or when it 
produces the first L-2 values for a generic level j  ; it 

I is read when the array computes the last (L-2)/2 
L - - - - - - - - - - - - - - - - - - - - - l  values of level j+ I .  It can be therefore set up as a one 

Fig. 3: Systolic architecture to perform DWT, PE-RPA port memory of (L-2) lo@ words. 
(L=4) .  The changes to the basic architecture (RPA) consist 

situation: in a larger memory and in a more complex controller. 

PE : 0 1 2 3 4  5 .... As to memory, the overall amount of words necessary is 
L(1ogN- 1)+2(L- l )+(L-2)logN; in most practical cases, 

State: LPj HPj LPI  H P I  LP, HP, .... L -logN, and the dimension of the memory can be 
When in state LP,, the PE uses the token value level approximated to 2L IogN, that is twice as much as in 

to get the correct address for reading from the local the basic RPA. The actual cost of the extended 



architecture is hidden within the controller, which has a level enabler: when it has reached the L-th state, it 
more counters and which drives more control points. enables the current level (initially the first), allowing the 

The breakdown of the controller 
level sequencer submodule to start scheduling the-fust 
level computations. It then starts counting for the next " 

Figure 4 shows the partitioning of the architecture af level, and-SO on. 
the controller. The external control signals are reset and The level sequencer is a set of module-2 counters, that 
clock (not shown, because shared by all of blocks) and schedules a level computation for each level j < j *  that 
start, end-input. has been enabled (that is, for which the first L elements 

The overall operation of the system consists of an ofthe previous level have been already computed). The 
initialisation and of a processing phase, The module-2 Counter takes into account when a new couple 
initialisation begins when the external input reset is of previous level elements can be used to perform a new 
asserted; the controller sets up the array by propagating computation. A point worth noting regards the need for 
the <state,level> tokens and signals that the operations shifting data, in local memories. To better understand 
can begin by asserting the start output when the when Such Situation occurs, we can consider the 
propagated tokens have reached P E ~ .  The unit following example: with L=10, when the first 14 input 
starts sending the input data at every other clock cycle data samples have been read, the first level computations 
and closes the processing phase by asserting the input have already been enabled by the module-10 counter and 
signal end-~nput. the level sequencer has scheduled the first level 

The PE-RPA controller is partitioned into the coefficients a/@) a/( / ) .  These values have been written, 
following modules: state sequencer, scheduler, PA by the datapath interface (which will be described later), 
scheduler, data path interface, border manager. Each af respectively to PEI and PEo local rt~emories. Since a 
these modules can be further decomposed into sub- couple of values is not sufficient to allow a second level 
modules, respecting the hierarchy shown in Figure 5. computation, the second level is not enabled, but there 

is the need to make these couple of values shift along 
The state sequencer the local memories, in order to get into the correct PE 
This module is activated by the reset signal and position, when the second level will be enabled (this 

produces the sequence of states used by the PEs within values reach and P E ~ - 2 1  

the array. The period of the sequence is 4 and each item respectively). In fact, if it doesn't happen, the 
is and output at every cycle. ~t is the ~0mp~fat ionS of the next couple of first level coefficients 
responsibility of the Scheduler to make sure that enough a/(3)7 would rewrite the first c o u ~ l e ,  causing a 
clock cycles are counted (and consequently, enough state loss data. the level sequencer signal that a 
tokens generated and forwarded to the array) before the second level shift is needed, although no second level 
first input  is used. already described, the state value should be computed. Therefore the controller has 
sequence allows to intermingle the computations of the send PEs another 
approximation and detail signals within the array, by Level-enabled, that in this case has to be set to false, 
having each PE reuse each input item twice in while it is true for the enabled levels. 
consecutive states for the same level. Glue logic and a clock divider complete the Scheduler 

in order to realise a hierarchy priority 
mechanism for level scheduling so that when 
two enabled levels can compute a new value, the 
lower level takes precedence. 

S Y S T O L I C  
The PA scheduler 

- I  The other scheduling module. PA Scheduler, 
is activated after T* (actually, a little before, 

' because we have to consider the latency to 
propagate from the controller to PEo in the 
systolic array). It generates the PA scheduling 
sequence of levels as previously described. 

The functionality is the same as that of the 
Scheduler, but there exists a subtle difference in 
managing control. Indeed during PA scheduling 
there is the need to manage borders extension; 
so when a level computation is reaching the last 
(L-2)/2 coefficients, the PA scheduler should 
signal the need for border management and 
border data. Since the state of datapath is 

Figure 4: PE-RPA controller's partitioning. 

The scheduler 
This is the controller component that generates the 

sequence of control information to be used by each PE. 
That is, it generates for the first scheduling phase 
( r  < P), the correct sequence of levels in the <state, 
level> pairs to perform PE-RPA computations. Since it 
has to take into account the initial latency for each level, 
it is composed by a module-L counter. This component 
starts counting the first L input data samples and acts as 

delayed with respect to the actual scheduling, 
the controller makes use of a L-clock delay line 

to transmit the request for borders data to the Border 
Manager. There is also the problem of managing data 
shift for the subsequent level. We use states LP,, to 
perform this task when needed 

The data path interface 
The functions carried out by this [nodule can be 

subdivided into two major operations: forwarding the 
input samples to the array and splitting the output into 
the detail signal, which is actually sent to the outside 
world, and into the approximation signal, which is kept 



within the system for higher level computations. The 
handling of this stream of data can be further broken 
down into two major phases: in the f rs t  one, the 
approximation is stored directly and alternatively into 
the local memories of the first two PEs; after T*, the 
output from PEO has to be stored into the PA memory 
for proper reuse when the computations of the level 
using them will be scheduled. The 2(L-1) memory 
locations that make up the PA memory allow for a 
straightforward embedding of this memory within the 
data path interface module, which is the only module 
that interfaces with it; control signals to operate on the 
PA memory are therefore best kept local to data path 
interface. During the second phase of operation, the data 
path interface receives data from the border manager, 
precisely when the last coefficients of each level are 
produced. Data from the border manager are required 
also in the first phase, just before T*, that is when the 
first level computations are terminated. 

The end-input signal is used to discriminate between 
the first and the second phase of operation; it triggers a 
sequence of internal control states that are subsequently 
conditioned also by signals from the PA scheduler. The 
data path interface contains 2 internal registers each log 
N-1 bit in length; one keep tracks of the destination 
memory for each level, and toggles the level bit 
identified with the level token emerging from the array, 
thus alternating between PEo and PEI; the second 
register stores an activity bit that is set when a data item 
is stored into the corresponding level for later use by 
the array, and is reset when the array output carries a 
token showing that the data item has been used. 

Border Manager 
The main purpose of this module is to store the first 

L-2 coefficients produced at each level, for later reuse 
when extending the convolution at the end of the same 
level. To do so, a border memory is required, 
consisting of (L-2) logN words. This module interfaces 
directly with the input, because the first L-2 data have to 
be stored directly into the border memory, for the 
convolution on the input (level 0); the remaining data 
are received from PEo, with its whole state information. 
Data stored into the border memory are extracted by this 
module upon request from the external (end-input is 
asserted) or from the PA scheduler (end-level asserted, 
meaning that in a level the last coefficient that does not 
required border data, has been scheduled); a couple of 
data is forwarded to the data path interface for storing 
into the local memories with two consecutive states on 
the negative clock transitions, in time for the data path 
interface to sample them on the following positive clock 
transition. 

The VHDL implementation 
The PE-RPA controller has been described in VHDL, 

adopting a mixed behavioral and RTL style of 
description. The leading criteria for partitioning the 
controller is based on functionality and feasibility of 
synthesis. Actually, the resulting structure described in 
the following is the outcome of a synthesis process that 
has forced an increased depth in the hierarchy, whenever 
the complexity of the synthesised design unit was too 
L:,L 

been furthermore decomposed into sub-components 
when necessary. Figure 5 reports the hierarchy 
partitioning and the association between functions and 
design entities. As an instance, the state sequencer is 
described as a process in the top-level entity; 
analogously the scheduler is not described as a separate 
entity but its components are directly instantiated inside 
the top-level. One of the most involved module is the 
border manager. It has been described with 3 sub- 
entities: one to get and store the first L-2 values for each 
level (data input comprised), one to manage the sending 
of input data stored, and one to manage the sending of 
higher levels coefficients to the data path interface 
(further decomposed for levels j<j* and j >j*). 

Processes and design entities 
Many entities are composed of a certain number of 

cooperating processes, which trigger each other and 
correspond to operations that are mutually exclusive. 
For example, the data path interface has been described 
by four processes, each of them corresponding to a 
particular situation: one process reads input data and 
forwards it to the array (reading also border data to 
conclude the first level computations); one reads output 
values produced by PEo, that need to be stored in the 
local memory of PEo or PE,, during the first scheduling 
phase; one concludes the second level computations, 
sending also border values to the local memories and 
storing the computed coefficients into the PA memory; 
the last process manages the output produced, the 
sending of data to local memories and the receiving of 
border values, during the second scheduling phase till 
the end, making a distinction between levels over and 
below j*  . 

Memory inference 
We decided to implement the memory required by the 

controller using registers rather than RAM components. 
This choice is justified by the little amount of memory 
needed, and the requirements of access pattern. This 
choice is valid also for the PE local memory, where we 
may need read and write accesses to different (but in 
some cases, to the same) addresses in the same local 
bank memory. The depth of the word line is 20 bits and 
the total amount of additional memory, with respect to 
the reference RPA architecture, is (L-2)logN + 2(L-I) 
words. 

The reference description of the PE-local 
memory pair 

The description of the processing elements has been 
made considering a unique entity which combines the 
combinational path (multiplier and adder) with the local 
memory. There are three separate processes: one to 
manage the local memory, one to manage the operation 
based-on input state information and one to samples 
input data line, according to clock events. 

The local memory has dimension l o o - 1  word and is 
realised with latches. The memory is asynchronous: 
every time the signal enable-write is raised, the 
corresponding data line is sampled and stored in the 
address specified. Read operations instead are initiated 
synchronously by the corresponding PE; furthermore, 
everv time there is a read from a memorv location at 

111g11.  the data read is shifted and stored intd to the same 
The design hierarchy location of the memory of PE,+2. 
The basic operations just outlined previously The asynchronous memory is useful to avoid partial 

correspond in most cases to a design entity instantiated stalls, during the PA schedule phase, for levels j'j* 
in the controller top level entity. Each design entity has with Nj<L-2, since the propagation of data needed from 



the previous level over the array of local memories must 
be "as fast as possible", in order to get the data into the 
correct position for convolution without delays. 

The PE has a couple wavelet filter coefficients (low 
pass and high pass corresponding to filter position i) 
used alternatively, on the base of the state (LP, or HP,) 
received. Currently, they are instantiated as constants. 

The synthesis results 
The design hierarchy just described has been 

synthesised using SYNOPSYS Design CompilerTM, 
with a target technology library from SGS-Thomson 
(HCMOS 0.35 micron). 

Table I shows the major figures obtained by the 
synthesis of the design units described previously. 

The overall constraint used in the synthesis process is 
a symmetrical clock with a 20ns period that has been 
met everywhere. The choice of this constraint has been 
done by considering the speed of the fastest multiplier 
available to perform the 36 bits internal product in the 
PE (about 10 ns): the other 10 ns have been allocated 
considering the broadcast of data read from the local 
memories, that could potentially travel from the first 
PEo to the last PEL., when computing last levels. This 
requirement for a potentially dangerous broadcast 
operation is however non critical in practical situations, 
since the wavelet transform is hardly carried out up to 

equenca Schedul a khedd a I n t d c e  Manager 

borders 

Figue 5: PE-RPA Controllerhierarchy: boxes with k a v y  stroke 
are ent ities, bubties are processes. 

the highest level. 
The synthesis strategy has been changed across the 

design units; the default structuring and resource sharing 
has been used in most cases, except in the data path 
interface, where the sharing has been reduced. Boundary 
optimisation has been applied to the design units that 
embed a hierarchy, such as the border manager. 

Currently, the overall hierarchy has not been collapsed 
into a single design unit; we expect a certain amount of 
further optimisation by this last phase of the synthesis. 

The most important conclusion that can be drawn by 
the figures shown in table I is the relative complexity of 
the PE-local memory systolic array with respect to the 
overall controller. In a 10 stage array (L=10), that 
supports a fairly large convolution kernel, capable of 
handling standard image dimensions (N=512), the area 
taken by a PE-local memory pair is roughly 118 of that 
of the controller. Stated otherwise, the requirement of 
handling borders costs as much a the bare processing for 
the DWT convolution, a result that cannot be 
disregarded. 

Conclusions 
In this work we have designed the hardware structure 

required to handle the border effect for perfect 
reconstruction of a DWT transformed finite signal. We 
have shown that the synthesised hardware is comparable 
to that mandatory for the execution of the convolution 
with a fairly standard kernel. We expect that the 
complexity of the controller could be reduced 
considerably by assuming that the DWT transform is 
not carried out up to the last level; indeed, in some 
applications such as image compression, the number of 
levels computed hardly goes beyond 3 or 4 in images of 
up to 1024x1024 pixels in size. 
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