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Abstract 

An analog vision chip has been designed 011 the 
basis of retina models. Biological retinas perforni 
a massively parallel computation well suited to  low 
level visual processing applications such as edge ex- 
traction, motion detection and light adaptation. An 
analog electrical model has been developed that is 
suitable for designing analog neural network circuits 
with low power consumption. This 4000 pixel neu- 
romorphic circuit extracts edges or detects motion 
over a large dynamic range of luminosity and veloc- 
ity. Experimental results are presented. 

1 Introduction 

Numerous digital visual algorithms are used in a 
wide range of applications : edge extraction, texture 
analysis and motion sensing and analysis. In such 
systems, the amount of information delivered by the 
source is substantial. The required investment in 
hardware and conlputation time is often very costly 
for just low level visual processing. 

On the other hand, bio-inspired retina models 
represent a massively parallel spatiotemporal filter 
that  is effective for low level visual processing ap- 
plications such as edge extraction and motion de- 
tection [I] 171. Our model contains a two-layer fil- 
ter structure representing the first functional retina 
layer. It provides an easy way to  implement analog 
continuous time filtering in the focal plane array [6] 
[8]. The  design of low power smart sensors is facil- 
itated by the simple structure of the network and 
by use of CMOS transistors in weak inversion mode. 
Each pixel of the array includes a light adaptive bio- 
inspired system t o  increase sensitivity by better in- 
formation encoding 131. Also, this system reduces 
noise effects by adaptive filtering 151. 

Our chips have been fabricated using a 3.3V, 
0.5pm CMOS technology. We present a circuit in- 
cluding an array of 64x64 pixels with both analog 
and digital outputs. This chip can extract edges of 
static and moving objects or detects motions. These 
two functions and filtering features may be selected 
by bias voltage modulation of the network parame- 
ters. Experimental results demonstrate both oper- 
ating modes. 

2 Biological inspiration 

The retina is the first neural structure to  be used 
in visual data processing (Fig. 1).  It filters input 
signals and extracts only the relevant information 
used in visual cortex for high level visual processing 
tasks. 

Figure 1: Schematic cross section of the Macaque 
retina showing the five basic neural cells. The synap- 
tic triad (the basic neural set of our model), which 
connects the three OPL cells, is enlarged. 
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The photoreceptors convert incident light into 
electrical signals and also compute a first low pass fil- 
tering. Each horizontal cell (H)  spreads information 
over neighboring horizontal cells and thus performs 



spatiotemporal low-pass filtering on the photorecep- 
tor outputs. Bipolar cells (B) deliver the difference 
between the receptor and horizont,al cell responses. 
This band-pass filtering result fo r~ns  a first func- 
tional layer: The Outer Plexiform Layer (OPL).  The 
second functional layer, the Inner Plexiform Layer 
(IPL),  is composed of amacrine cells ( A )  and gan- 
glion cells ( G ) .  It uses OPL o u t p u t , ~  for among ot.11- 
ers detecting motion and encoding the information 
before transmitting it through the optical nerve. 

3 Electrical model 

The first analog retina model was proposed by C. 
Mead et al. [6]. This model implen~ents the biologi- 
cal structure which connects the three OPL cells, i.e. 
the synaptic triad. I t  constitutes the basic neural set 
of our model. In order to develop a biologically and 
structurally consistent retina model, a more com- 
plex OPL model was developed in our Laboratory 
[I]. This model incorporates a resistive layer which 
implements photoreceptor coupling (Fig. 2) .  It pro- 
duces in Ck(t )  a spatial low pass filter that attenu- 
ates the photoreceptor's dispersion and reduces the 
noise. Ek( t )  is the output voltage of the light adap- 
tive phototransduction stage. It provides an inci- 
dent light-electrical signal conversion in accordance 
with the illumination condition. This light adaptive 
system control the resistor r,. 

Figure 2: Electrical schematic of the OPL model. 

The second resistive layer perfor~ns in Hk(t )  a 
low pass filtering, which is equivalent to deliver a 
spatiotemporal averaged value of the photoreceptor 
outputs. The differential output in Bk(t )  provides 
a spatial band-pass response and a temporal high 
pass response for a range of a low spatio-temporal 
frequencies. The transfer function is given by: 

Two types of const.ants modulate the outputs of each 
layer : 

The space-constants a, = and a h  = $ 
control the spatial filtering. 

The time-constant r h  = r h C h  controls the tem- 
poral filtering. 

These constants are modulated by external biases 
which control resistor values. 

This network possesses very attractive properties 
for image processing by the modulation of the a h  

parameter: 

It inherently does edge extraction in an image 
(Fig. 8.b and c). 

It can detect only the edges of rnoving objects 
(Fig. 8.d). 

The motion detection emerges from tlie second term 
of the network transfer function (1). If the space- 
constant a h  (which controls spatial behavior of the 
second layer of the filter) tends towards zero (with 
horizontal resistors R h  much higher than vertical 
resistors r h )  then t,he network transfer function is 
transformed in such that spatial filtering disappears 
for low temporal frequencies. Edges of fixed objects 
are therefore strongly attenuated as a h  tends to- 
wards zero. On the other hand, edges of moving 
objects are continuously extracted and enhanced. 

The phototransduction stage and the first re- 
sistive layer implement a non-linear photoreceptor 
model with lateral interactions which are deduced 
from the biological cone adaptation system [l]  [2]. 
Several authors have shown interest in light adaptive 
systems. Usually, this property was used to  increase 
the sensitivity of photoreceptors [3] or t,o improve 
regularization [ 5 ] .  Our model offers both these pos- 
sibilities. It increases the sensitivity in comparison 
with a classical logarithmic compressor circuit [7]. 
The new compression law is logarithmic only for il- 
lumination levels close to  the average value (Fig. 3). 
The curve shifts according to  the mean illumination. 
For an input range A 1  (Fig. 3),  a higher ouput 
range AV2 is obtained with the light adaptive pho- 
to t ransd~ct~ion law than the logarithmic compres- 
sor law (AVl). For convenience;phototransduction 

G(fzl  ft) = B(fx ' f t )  = Fh(fx, f t)[l  - F c ( f x ,  ft)] 
E(fZ 1 ft curves are plotted using the phototransistor pho- 

tonic current and not the illumination value. In 

with figure 4, experimental results are presented. The 

C ( f X 7  f t) edges are extracted with an I D  network using log- 
FC(fZl f t )  = 

E ( f X ? f t )  
(2) arithmic compressor (a.1 and b.1) and with a light 

adaptive network (a.2 and b.2). The network pa- 
1 ralneters are the same for both 1 D retinas except 

Fc( fz , f t )  = 
1 + 2 a c ( l  - cos(27r f,)) ( 3 )  the differentiator gain. Thus, results obtained are 



equal for a maxiniuni contrast (a.1 ancl a.2).  On the 
other hand, a pattern witli a less stronger contrast 
is better extracted with the adaptive network (11.2). 
The  sensitivity to  weak contrasts increases thrortgh 
better information encoding. 

Figure 3: Comparison between a classical logarith- 
mic conipression law and light adaptive pliotot,rans- 
duction law. 

Figure 4: Experimental results with our test circuit 
for different contrasts and a luminosity of 4000 Lux. 
There are two 1D 48 cells retinas on this circuit. 
One uses logarithmic compressor (a.1 ancl b.1). Tlie 
second one is a light adaptive network (a.2 and b.2). 

Furthermore, tlie resistor I., is controlletl hy t,he 
incident light arid the mean illumination. Tlie high 
cut-off spatial frequency of tlie network is therefore 
modulated by tlie resistor variation. The figure 5 

shows experimental and simulation transfer function 
curves obtained witli our OPL model [9] [4]. The 
handtvidth and tlie gain decrease with the illumina- 
tion condition. Tliis enables an adapted regulariza- 
tion by automatic signal-to-noise ratio optimization 
[5]. Note that  tlie cut-off frequency and tlie illumi- 
nation conditions are different for silnulation results 
ant1 experimental results. 
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Figure 5: Adapt,ive filtering: a)  Experimental trans- 
fer function curves versus spatial frequency (in cy- 
cles per degree) for different mean illuminations. b)  
Simulation resu1t.s. 

4 A 64x64 pixel silicon retina 

Our first 2D ret.ina (an  array of 24x24 pixels, 
~ ~ I J ~ I ? I ? ,  250pIl', (::MOS 0.5pm) [8] showed t.he fea- 
sibilit,y of analog neuromorpliic circuits wit11 good 
filtering features. 

Thus,  we designed a more con~plex circuit in or- 
cler t.o tiemonst8rat,e it,s uses in different appl i~at~ions .  
Tliis one contains an array of 64x64 adaptive pixels. 
The pixel size is 110p1~1 x 11Oprn and it contains 55 
transistors. The pliototransistor is a vertical PNP 
witli an area of 9 0 0 p ~ i ~ 2 .  Tlie chip is designed in a 
3.3V CMOS 0.5pm tecl~nology (Fig. 6). 

Figure 6: Pliotograpli of the 64x64 retina (55 tran- 
sistors per pixel, 701n?n2) 

The circuit includes an analog output (for video, 



25 images per second) and a digital output (6-bit 
AD flash converter) with t,he possibilit'y of raildom 
addressing (Fig. 7).  
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Figure 7: The  chip's funct.iona1 hlocks 

Tliis circuit, which is current.ly usetl in a camera, 
can work in different modes (eclges extraction or mo- 
tion det,ect8ion). Tliis is easily selected via only one 
external modulation (hias voltage) of a net,work pa- 
r an~e t~e r  ( a h ) .  The  figure 8 l) and c shows results in 
edge ext,ract,ion mode. Edges of moving ohject,s ( the  
car in c) are more enhanced than etlges extracted 
wit,Ii an immobile car (in I)). Tlle image tl present 
the ~uot,ion detection mode rcsult., where only the 
moving car appears. 

Figure 8: Video sequence witli the 4000 pisel retina. 
a )  Original scene contains a fisetl plane and a car. b)  
Edge extraction mode witli a fisecl car. c) Edge es- 
traction mode with a slowly moving car. d )  Motion 
det,ection mode. 

eters is ~ u i t ~ a b l e  for the detection of all mobile objects 
in a sheet  scene. 

We designed a 4000 pixel analog neuromorphic vi- 
sion circuit. It conta.ins 250000 t,ransistors, an  ana- 
log and a digital out,puts wit.11 the possil~ilit,y of ran- 
don1 addressing. This silicon retina is current.ly used 
in a camera. 

It can work in edge extraction nlotle or motion 
detect,ion mode by easily ext.ernal modulation of t.lie 
net,work paramet.ers. The motion detect,ion is effec- 
tive over a wide range of speeds. The light adapt.ive 
syst.em offers high sensitivit.y to weak cont,rasts wit11 
an aut,olnatic signal tso noise rat,io opt,imizat.ion. 

Results obtained witli this intelligent. sensor are 
suitable for real tinie applications in robotics, detec- 
tion and machine vision. 

Tliis work benefits fro111 the support of the C N E T  
(market title ,VO 95 3B).  
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