
MVA'98 IAPR Workshop on Machine Vision Applications, Nov 17-19, 1998, Makuhar~, Ch~ba, Japan

10-2
Successive Pose Clustering for Stereoscopic Object Recognition

Takeshi SHAIiUNACA Tohru OHNO
Department of Information Technology, Okayama L-niversitj.

Okayama-shi, Japan 700-8530
E-mail: shaku(Qit.okayama-u.ac.jp

Abstract
The concept of generalized trihedral vertex (GTV)

is proposed for 3d object representation. The concept
covers not only polygonal objects but also curved ob-
jects including rounded edges and rounded corners.
An effective algorithm is shown for matching two
GTVs, one of which is constructed from stereoscopic
images and the other of which is precompiled in the
G T I - database. Finally, we construct an efficient algo-
rithm for successive pose clustering based on the GTV
matching. The pose space (6 DOF) is decomposed into
3d rotation space and 3d translation space. Successive
algorithms are constructed to perform pose clustering
in the two spaces without using any Hough-like voting
or any peak detection.

1 Introduction
Ol~ject recognition is one of the most important

themes in computer vision. Considerable work has
been accomplisl~ed with a single image [I]-[7]. In the
controlled environments, some of them can work well
by utilizing the information on the environments. The
single view approach, however, suffers from difficulties
of initial correspondences between image and model
primitives in the uncontrolled environments. To avoid
this difficulty, this paper proposes a new approach t o
the 3-d object recognition using stereoscopic data.

2 Object Model Representation
2.1 Selection of Primitives

\Ye have to determine what primitives to use for
3d object recognition. The primitives should cover
a wide varietie~ of 3d model representation. On the
other hand, the primitives shoi~ld be extracted from
both a stereoscopic image and a 3d model data. I t is
not global features but local features that satisfy the
above two reqilirements.

Among local feature primitives, trihedral vertices
are a very common concept in computer vision. A
trihedral vertex is composed of three planes which
strictly meet one another a t the vertex. Although the
trihedral vertex seems very week to cover a wide vari-
ety of 3d objects, we can extend the concept to cover
them.
2.2 Generalized Trihedral Vertex(GTV)

To cover a more general object class, a new primi-
tive should be introduced instead of the trihedral ver-
tex. We call the new primitive a generalized trihedral
vertex or a GTV in short.

X GTV is a generalized concept of triliedral vertex
in the following meaning. First, planes are generalized
to surfaces of which contour can b~ observed in the
image. Second, the vertex is generalized to vertex-like
local feature. A generalized trihedral vertex is com-
posed of three surfaces which roughly meet a t a point
called a virtual vertex as shown in Fig. 1. Further-
more. three observed line segments. which are located
near to one another, are regarded as a generalized tri-
hedral vertex.

A virtual vertex can be calculated from three space
lines by the least-squared error method. The virtual
vertex is not stable when the three lines are in general
position. But i t is stably calc~ilatetl when the three
lines are near and they are not parallel. Wlicn the
three lines strictly meet a t the crossing point, the vir-
tual vertex coincides with a real one. Otherwisr, it is
a virtual concept which is not observed in the image.

l\c can enumerate all the GT\'s from stereoscopic
da ta as well as from a given 3d object model. Locality
constraint is applied to a three-line set in order to sup-
press the computational cost and erroneous combina-
tions which are generated by occlusion. In our current
implementation, three line segments are selected when
the minimum distance between the terminal points of
two lines are smaller than a threshold. This constraint
can work very effectively t o prevent combinatorial ex-
plosion of the number of GTVs.

3 GTV-based Object Recognition
3.1 System Overview

We can make up an object recognition system based
on GTV matching. Rough scheme is as follows:

Figure 1: Generalized trihrdral vertex.

a) GTV database is precompiled from given 3d ob-
ject models.

b) A set of GTV is extracted from unknown stereo-
scopic data.

c) Each GTV is matched with GTV database, and
a matched pair generates a possible object model
and its pose.

d) Successive pose clustering is accomplished to
make a set of feasible poses of a particular ob-
ject.

e) The object identification and the pose estimation
are accomplished using backprojection.

3.2 GTV Database
The GTV database is compiled from a given set of

3d object models. All the GTVs are extracted from
each object model, and they are labeled with the ob-
ject name and its object-centered coordinates. Each
GTV has the following attributes for efficient match-
ing. We use a N-vector notation N(x) = x/llxll for
simple description.

1) Location of the virtual vertex, x

2) Locations of terminal points of the three line seg-
ments which form the GTV

3) Three unit vectors which show the directions of
the lines, g i (i = 1,2,3)

4) Scalar triple roduct of the three unit vectors,
1csl x s 2) . al'

5) Three angles generated by two lines of the three
(in descendent order), &(i = 1,2,3)

6) Pointers from &(i = 1,2,3) to two lines

7) Orthogonal bases, h i (i = 2,3), which are defined
as follows:

hl = N (C i gi) when x g2) . g3 1 5 0.3
= N(g1 x g2) otherwise

It is noted that 1) through 3) are given in the
object-centered coordinates. Random sampling can
be performed when the total numbers of GTVs are
too large. These GTVs are classified in the GTV in-
dex table, which is coordinated by dl and d2 for quick
matching.
3.3 Extraction of GTVs

Given stereoscopic image data, GTVs can be ex-
tracted in the similar way. They are associated with
the same attributes as shown in the previous subsec-
tion. I t should be noted that 1) through 3) are given
in the viewer-centered coordinates.

4 Pose Candidate Generation from
GTVs

4.1 Matching GTVs
Each GTV extracted from stereoscopic da ta is

matched to GTVs in the precompiled GTV database.
This matching is efficiently performed on the GTV
index table. If some candidates are found in the
neighborhood of the index, (&, d2) , the corresponding
records in the GTV tables are checked. When 4 3 and
the scalar triple product of the GTV record in the
database are similar to ones of the GTV, the GTV
record is selected as a candidate.

Figure 2: Candidate pose generation from matched
GTVs.

4.2 Pose Candidate Generation
Rough scheme of the pose generation is shown in

Fig. 2. A translation matrix T can be calculated from
correspondence of the virtual vertices:

where x and x denote positions of the virtual vertices
in the given stereoscopic data and in the database,
respectively.

For a matched pair of GTVs, a rotation matrix R
can be estimated from correspondence of three unit
vectors. Let gi(i = 1,2,3) denote three unit vectors
in the given data, and gi(i = 1,2,3) the corresponding
three unit vectors in the database.
(1) Calculate orthonormal bases, hi(i = 1,2,3):

h l = N (C i gi) when I(gl x g2) . g31 5 0.3
= N(gl x gz) otherwise

h2 = N(g1 x h i) h3 = h l x h 2

(2) Calculate the rotation matrix, R

Thus a pose candidate can be estimated from a
GTV pair. Note that hi is compiled in the GTV
database for diminishing the cost in the pose gener-
ation.

5 Successive Pose Clustering
5.1 Problems in Conventional Clustering

It is known that pose clustering techniques, such as
the Hough transform and geometric hashing ([I]-[4]),
are effective for robust object recognition[5][6]. Al-
though these voting methods are easy to implement,
there are two problems with these techniques when
the pose space is big. In our problem, the pose space
is six dimensional space. We can decompose the pose
space into two subspaces of rotation and translation.
However, the voting spaces are still three dimensional.
If we use these three dimensional spaces for the vot-
ing, we have to quantize the space into an appropriate
number of cells.

Ikeuchi et al.[7] and Shakunaga et al.[8] proposed
successive clustering schemes for appearance based ob-
ject recognition, for SAR images and for camera im-
ages, respectively. Although these schemes have not
covered 3d rotation yet, an efficient algorithm can be
constructed for the stereoscopic object recognition if
the successive clustering is applied to the 3d rotation
space. \Ye propose the successive algorithm in this
section. - - - - - - -. .

The rough description of the pose clustering is as
follows: When a new candidate pose is obtained from a
feature correspondence described in the previous sec-
tion, this pose candidate is examined whether it is
within a certain distance, a clustering threshold dis-
tance, to one of the existing clusters. If it is within
the distance from multiple clusters, the largest cluster
will be preferred. Then, the average pose and the size
of the cluster will be updated to include the candidate
pose. Although a new candidate will be absorbed in
the largest cluster even if another cluster is nearer to
it, this is not a significant problem, if the order of pose
generation is sufficiently randomized.
5.2 Equations for Successive Clustering

It is very easy and straightforward to implement the
successive clustering in the translation space[7]. When
a translation T is generated in the neighborhood of a
cluster Ti, and the size of the cluster is n;, then Ti
should be updated to

On the other hand, a complete clustering algorithm
in the rotation space is not easily made. However, an
incomplete but effective algorithm can be constructed
using Chasles' theorem[9].

When a rotation R is generated in the neighbor-
hood of a rotation cluster R;, and the size of the clus-
ter is ni, then the two rotations can be transformed

from one to the other by a rotation around an axis.
Let e = (e l e2 e3)T denote a unit vector along the
axis, and 6 denote the amount of rotation. Then a
6-rotation around the vector e can be shown in:

where

when (e l e2 e ~) ~ , (a l a2 and
(bl b2 b ~) ~ are the orthogonal bases.
By the way, Q(e, 6) is calculated from R and R;:

From Eqs. (2) and (3), c;j is expressed by e and 6
as follows.

c;; =eT + (I - e?)cos6

cij = eiej(l-cos8)+e6-;-j sin 6 when i - j = 3k+l

c;j = eiej(l-cos O)-ec-i-j sin 6 when i - j = 3k-1

Therefore, 6 and e can be calculated by

C32 - C23 C13 - C31 C21 - C12 T e = (
2 sin 6 2 sin 6 2 sin 6) (5)

Using Q(e,6), Ri can be updated in the similar
manner as the translation:

R: = Q(e, 6/(ni + 1))Ri. (6)

Geometric meaning of this operation is illustrated
in Fig. 3. I t should be noted tha t the clustering result
is dependent on the order of candidate poses because
the pose space is not linear. The stability is, however,
experimentally confirmed in 6.1, when all the candi-
date poses are near enough in the pose space.

Figure 3: Geometric meaning of successive clustering
with R.

Object rn
-- --

Translation Rotation ni
1 T I RI 20
2 T7 R2 14

Figure 4: Pose cluster list.

5.3 Efficient Implementation
Using equations described in the previous subsec-

tion, an efficient algorithm can be constructed as fol-
lows:

5.3.1 Pose Cluster List

The pose cluster list is defined as a list of pose cluster.
Each record in the list consists of a record number i,
a translation Ti, a rotation Ri and the number ni of
member poses in the cluster as shown in Fig. 4. No
record is initially included in the list, and the list is
kept sorted in the descending order of n; as shown in
5.3.4.

The maximum limit k,,, can be used for shorten-
ing the calculation cost where k,,, is controlled so as
to be not too large and not too small.

5.3.2 Finding the Nearest Pose

When a candidate pose is generated, each record in the
pose cluster list is sequentially checked whether i t is
similar to the candidate pose. To cut the calculation
cost, /IT - Till is first checked. If it is bigger than
a threshold, Q, the record is skipped. Only if it is
smaller than the threshold, 0 is calculated by using
Eqs. (4) and (3) from R and R;. If 101 is bigger than
a threshold, € 6 , the pose cluster is selected. Otherwise
the record is skipped.

When no similar pose can be found in the list, the
candidate pose is registered as a new pose cluster un-
less the number of record, k, is over the limit, k,,,.

5.3.3 Updating Ti, Ri and ni

When the similar pose is selected as described in the
previous subsection, Ti, Ri and ni are updated in this
order. is simply updated by Eq.(l). To update Ri,
e is first calculated by Eq.(5), then
calculated, and Ri is updated by Eq.
size ni is incremented a t last.

5.3.4 Maintenance of the sorted list

When l e i is incremented, it should be compared with
n j (j = i - 1, i - 2, ..., 1) in this order. If the j-th
record is the first record that satisfies n j 2 nj, and if

j # i - 1, then the i-th record and the (j - 1)th record
are exchanged. Otherwise, no exchange is occurred.

5.3.5 Termination of the clustering

The clustering process terminates either when a size
of the largest cluster is large enough or when the total
number of generated pose candidates reaches a thresh-
old. In the both cases, the largest cluster is selected as
a candidate pose and confirmed by the backprojection.

We can alternatively select several large clusters as
hypotheses and test them using a correspondence pro-
cess. This may be very effective for object detection
in very cluttered scenes.

Figure 5: Stability of the successive clustering in ro-
tation space.

6 Experimental Results
6.1 Stability of Successive Clustering

The clustering result of translation is independent
of the order of translations unless the member trans-
lations change because some different clusters exist in
the neighborhood of the cluster. On the other hand,
the clustering result of rotation depends on the order
of candidate poses. We confirmed the stability of the
algorithm by the simulation.

In the experiment, a set of candidate poses, R, =
{R) are generated a t random in 00 from a given pose,
Ro, where n shows the number of poses. Then test
sequences are made by randomly permuting the can-
didate poses and the successive pose clustering is tried
for each test sequence. Let R (j) denote the final pose
for the j-th test sequence. Then the distribution of
differences in 101 is checked over all the pairs of R(j)
and R(k) for R5, RI0 and RS0. The typical results are
shown in Fig. 5, for 00 = 5 and 10 deg. When 00 is not
smaller than 10 deg., the result pose difference never
exceeds Bo/20 in the simulations. When the number
of merged poses is 5, the result pose difference never
exceeds O o / l O O for any Bo. These results show tha t
the successive pose clustering is stable enough when
00 is no more than 10 deg.

6.2 Experiment on Simulation Data
(1) Air plane detection

(a)Ri11 3d model (b)Registered model

I I

(c)Stereoscopic da ta (d)Detected plane(l/2)

I I

I

(c)2.5D data (d)Registered model

Figure 6: Experiment for airplane model.

Figure 6 shows an experimental result for a plane
model. In this experiment, a partial shape model as
shown in Fig. 6(b) is registered instead of the full 3d
model which is shown in Fig. 6 (a). The registered
model consists of five wings, and doesn't include the
body part. For the generated stereoscopic scene as
shown in Fig. 6 (c), the object recognition system cor-
rectly extracted two planes as shown in (d) and (e).
6.3 Experiment on Real Image Data .,

Finally;the experiments were accomplished on real
stereoscopic data as shown in Fig. 7. From a pair of
images, (a) and (b), a stereoscopic line data shown in
(c) is derived by a line-based stereo algorithm. Then
the stapler model as shown in (d) is matched with the
stereoscopic data. Figure 7(e) shows the correctly
detected pose, which is superimposed to the 2.5D data.

7 Conclusions
A 3d object recognition algorithm is proposed for

stereoscopic data. The successive pose clustering algo-
rithm is confirmed to work with pose generation based
on GTV matching in this paper. However, the algo-
rithm can be applied to other types of 3d da ta such
as 3d point set generated by the SVD algorithm.

References
[I] Ballard, D. H., "Generalizing the Hough Trans-

form to detect arbitrary patterns," Pattern
Recognition, vol. 13, no. 2, pp. 111-122, 1981.

[2] Lamdan, Y. and H. J. Wolfson, "Geometric Hash-
ing: A general and efficient model-based recogni-
tion scheme," Proc. ICCV'88, pp.238-249, 1988.

(e)Recognition result

Figure 7: Experiment on real data.

[3] Stockman, G. S., "Object recognition and lo-
calization via pose clustering," Comp. Vision,
Graphics, Image Proc., vol. 40, pp.361-387, 1987.

[4] Dhome, M., M. Richetin and G. Rives, "Model-
based recognition and location of local patterns in
polygonal contours via hypothesis accumulation,"
Pattern Recognition in Practice 11, edited by E. S.
Gelsema and L. N. Kanal, North-Holland, 1986.

[5] Grimson, W. E. L., "Object recognition by com-
puter," The MIT Press, 1990.

[6] Wolfson, H. J. and Y. Lamdan, "Transforma-
tion invariant indexing", in Geometric Invariance
in Computer Vision (J. Mundy and A.Zisserman
edit, MIT Press), pp.335-353, 1992.

[7] Ikeuchi K., T. Shakunaga, M. Wheeler and T. Ya-
mazaki, "Invariant Histograms and Deformable
Template Matching for SAR Target Recogni-
tion," Proc. CVPR'96, pp.100-105, June 1996.

Shakunaga T., K. Ikeuchi and T. Kanade, "Ob-
ject Description and Recognition Using Invari-
ant Map," Trans. IEICE, vol. J80-D-11, no. 6,
pp.1466-1474, 1997(in Japanese).

Chen, H. H., "A screw motion approach to
uniqueness analysis of head-eye geometry," Proc.
CVPR'91, pp.145-151, June 1991.

