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Abstract 
The  concept of generalized trihedral vertex (GTV) 

is proposed for 3d object representation. The concept 
covers not only polygonal objects but also curved ob- 
jects including rounded edges and rounded corners. 
An effective algorithm is shown for matching two 
GTVs, one of which is constructed from stereoscopic 
images and the other of which is precompiled in the 
G T I -  database. Finally, we construct an efficient algo- 
rithm for successive pose clustering based on the GTV 
matching. The pose space (6 DOF) is decomposed into 
3d rotation space and 3d translation space. Successive 
algorithms are constructed to  perform pose clustering 
in the two spaces without using any Hough-like voting 
or any peak detection. 

1 Introduction 
Ol~ject  recognition is one of the most important 

themes in computer vision. Considerable work has 
been accomplisl~ed with a single image [I]-[7]. In the 
controlled environments, some of them can work well 
by utilizing the information on the environments. The 
single view approach, however, suffers from difficulties 
of initial correspondences between image and model 
primitives in the uncontrolled environments. To avoid 
this difficulty, this paper proposes a new approach t o  
the 3-d object recognition using stereoscopic data. 

2 Object Model Representation 
2.1 Selection of Primitives 

\Ye have to  determine what primitives to  use for 
3d object recognition. The  primitives should cover 
a wide varietie~ of 3d model representation. On the 
other hand, the primitives shoi~ld be extracted from 
both a stereoscopic image and a 3d model data. I t  is 
not global features but local features that satisfy the 
above two reqilirements. 

Among local feature primitives, trihedral vertices 
are a very common concept in computer vision. A 
trihedral vertex is composed of three planes which 
strictly meet one another a t  the vertex. Although the 
trihedral vertex seems very week to  cover a wide vari- 
ety of 3d objects, we can extend the concept to  cover 
them. 
2.2 Generalized Trihedral Vertex(GTV) 

To cover a more general object class, a new primi- 
tive should be introduced instead of the trihedral ver- 
tex. We call the new primitive a generalized trihedral 
vertex or a GTV in short. 

X GTV is a generalized concept of triliedral vertex 
in the following meaning. First, planes are generalized 
to surfaces of which contour can b~ observed in the 
image. Second, the vertex is generalized to  vertex-like 
local feature. A generalized trihedral vertex is com- 
posed of three surfaces which roughly meet a t  a point 
called a virtual vertex as shown in Fig. 1. Further- 
more. three observed line segments. which are located 
near to  one another, are regarded as a generalized tri- 
hedral vertex. 

A virtual vertex can be calculated from three space 
lines by the least-squared error method. The virtual 
vertex is not stable when the three lines are in general 
position. But i t  is stably calc~ilatetl when the three 
lines are near and they are not parallel. Wlicn the 
three lines strictly meet a t  the crossing point, the vir- 
tual vertex coincides with a real one. Otherwisr, it is 
a virtual concept which is not observed in the image. 

l\c can enumerate all the GT\'s from stereoscopic 
da ta  as well as  from a given 3d object model. Locality 
constraint is applied to  a three-line set in order to  sup- 
press the computational cost and erroneous combina- 
tions which are generated by occlusion. In our current 
implementation, three line segments are selected when 
the minimum distance between the terminal points of 
two lines are smaller than a threshold. This constraint 
can work very effectively t o  prevent combinatorial ex- 
plosion of the number of GTVs. 

3 GTV-based Object Recognition 
3.1 System Overview 

We can make up an object recognition system based 
on GTV matching. Rough scheme is as follows: 

Figure 1: Generalized trihrdral vertex. 



a)  GTV database is precompiled from given 3d ob- 
ject models. 

b) A set of GTV is extracted from unknown stereo- 
scopic data. 

c) Each GTV is matched with GTV database, and 
a matched pair generates a possible object model 
and its pose. 

d )  Successive pose clustering is accomplished to  
make a set of feasible poses of a particular ob- 
ject. 

e) The object identification and the pose estimation 
are accomplished using backprojection. 

3.2 GTV Database 
The GTV database is compiled from a given set of 

3d object models. All the GTVs are extracted from 
each object model, and they are labeled with the ob- 
ject name and its object-centered coordinates. Each 
GTV has the following attributes for efficient match- 
ing. We use a N-vector notation N(x)  = x/llxll for 
simple description. 

1) Location of the virtual vertex, x 

2) Locations of terminal points of the three line seg- 
ments which form the GTV 

3) Three unit vectors which show the directions of 
the lines, g i ( i  = 1,2,3) 

4) Scalar triple roduct of the three unit vectors, 
1csl x s 2 ) .  al' 

5) Three angles generated by two lines of the three 
(in descendent order), &(i = 1,2,3) 

6) Pointers from &(i = 1,2,3) to  two lines 

7) Orthogonal bases, h i ( i  = 2,3), which are defined 
as follows: 

hl = N ( C i  gi) when x g2)  . g3 1 5 0.3 
= N(g1 x g2) otherwise 

It  is noted that  1) through 3) are given in the 
object-centered coordinates. Random sampling can 
be performed when the total numbers of GTVs are 
too large. These GTVs are classified in the GTV in- 
dex table, which is coordinated by dl and d2 for quick 
matching. 
3.3 Extraction of GTVs 

Given stereoscopic image data, GTVs can be ex- 
tracted in the similar way. They are associated with 
the same attributes as shown in the previous subsec- 
tion. I t  should be noted that  1) through 3) are given 
in the viewer-centered coordinates. 

4 Pose Candidate Generation from 
GTVs 

4.1 Matching GTVs 
Each GTV extracted from stereoscopic da ta  is 

matched to GTVs in the precompiled GTV database. 
This matching is efficiently performed on the GTV 
index table. If some candidates are found in the 
neighborhood of the index, (&, d2) ,  the corresponding 
records in the GTV tables are checked. When 4 3  and 
the scalar triple product of the GTV record in the 
database are similar to  ones of the GTV, the GTV 
record is selected as a candidate. 

Figure 2: Candidate pose generation from matched 
GTVs. 

4.2 Pose Candidate Generation 
Rough scheme of the pose generation is shown in 

Fig. 2. A translation matrix T can be calculated from 
correspondence of the virtual vertices: 

where x and x denote positions of the virtual vertices 
in the given stereoscopic data  and in the database, 
respectively. 

For a matched pair of GTVs, a rotation matrix R 
can be estimated from correspondence of three unit 
vectors. Let gi(i  = 1,2,3) denote three unit vectors 
in the given data, and gi(i = 1,2,3) the corresponding 
three unit vectors in the database. 
(1) Calculate orthonormal bases, hi(i = 1,2,3): 

h l  = N ( C i  gi) when I(gl x g2)  . g31 5 0.3 
= N(gl  x gz) otherwise 

h2 = N(g1 x h i )  h3 = h l  x h 2  

(2) Calculate the rotation matrix, R 



Thus a pose candidate can be estimated from a 
GTV pair. Note that  hi is compiled in the GTV 
database for diminishing the cost in the pose gener- 
ation. 

5 Successive Pose Clustering 
5.1 Problems in Conventional Clustering 

It  is known that  pose clustering techniques, such as 
the Hough transform and geometric hashing ([I]-[4]), 
are effective for robust object recognition[5][6]. Al- 
though these voting methods are easy to  implement, 
there are two problems with these techniques when 
the pose space is big. In our problem, the pose space 
is six dimensional space. We can decompose the pose 
space into two subspaces of rotation and translation. 
However, the voting spaces are still three dimensional. 
If we use these three dimensional spaces for the vot- 
ing, we have to  quantize the space into an appropriate 
number of cells. 

Ikeuchi et  al.[7] and Shakunaga et  al.[8] proposed 
successive clustering schemes for appearance based ob- 
ject recognition, for SAR images and for camera im- 
ages, respectively. Although these schemes have not 
covered 3d rotation yet, an efficient algorithm can be 
constructed for the stereoscopic object recognition if 
the successive clustering is applied to  the 3d rotation 
space. \Ye propose the successive algorithm in this 
section. - - - - - - -. . 

The rough description of the pose clustering is as 
follows: When a new candidate pose is obtained from a 
feature correspondence described in the previous sec- 
tion, this pose candidate is examined whether it is 
within a certain distance, a clustering threshold dis- 
tance, to  one of the existing clusters. If it is within 
the distance from multiple clusters, the largest cluster 
will be preferred. Then, the average pose and the size 
of the cluster will be updated to  include the candidate 
pose. Although a new candidate will be absorbed in 
the largest cluster even if another cluster is nearer to 
it, this is not a significant problem, if the order of pose 
generation is sufficiently randomized. 
5.2 Equations for Successive Clustering 

It  is very easy and straightforward to  implement the 
successive clustering in the translation space[7]. When 
a translation T is generated in the neighborhood of a 
cluster Ti, and the size of the cluster is n;, then Ti 
should be updated to 

On the other hand, a complete clustering algorithm 
in the rotation space is not easily made. However, an 
incomplete but effective algorithm can be constructed 
using Chasles' theorem[9]. 

When a rotation R is generated in the neighbor- 
hood of a rotation cluster R;, and the size of the clus- 
ter is ni, then the two rotations can be transformed 

from one to the other by a rotation around an axis. 
Let e = ( e l  e2 e3 )T denote a unit vector along the 
axis, and 6 denote the amount of rotation. Then a 
6-rotation around the vector e can be shown in: 

where 

when ( e l  e2 e ~ ) ~ ,  ( a l  a2 and 
(bl b2 b ~ ) ~  are the orthogonal bases. 
By the way, Q(e, 6) is calculated from R and R;: 

From Eqs. (2) and (3), c;j is expressed by e and 6 
as follows. 

c;; =eT + ( I -  e?)cos6 

cij = eiej(l-cos8)+e6-;-j sin 6 when i - j  = 3k+l 

c;j = eiej(l-cos O)-ec-i-j sin 6 when i - j  = 3k-1 

Therefore, 6 and e can be calculated by 

C32 - C23 C13 - C31 C21 - C12 T e = (  
2 sin 6 2 sin 6 2 sin 6 ) (5)  

Using Q(e,6),  Ri  can be updated in the similar 
manner as the translation: 

R: = Q(e, 6/(ni + 1))Ri. (6) 

Geometric meaning of this operation is illustrated 
in Fig. 3. I t  should be noted tha t  the clustering result 
is dependent on the order of candidate poses because 
the pose space is not linear. The stability is, however, 
experimentally confirmed in 6.1, when all the candi- 
date poses are near enough in the pose space. 

Figure 3: Geometric meaning of successive clustering 
with R. 
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Figure 4: Pose cluster list. 

5.3 Efficient Implementation 
Using equations described in the previous subsec- 

tion, an efficient algorithm can be constructed as fol- 
lows: 

5.3.1 Pose Cluster List 

The pose cluster list is defined as a list of pose cluster. 
Each record in the list consists of a record number i, 
a translation Ti, a rotation Ri and the number ni of 
member poses in the cluster as shown in Fig. 4. No 
record is initially included in the  list, and the list is 
kept sorted in the descending order of n; as shown in 
5.3.4. 

The maximum limit k,,, can be used for shorten- 
ing the calculation cost where k,,, is controlled so as 
to be not too large and not too small. 

5.3.2 Finding the Nearest Pose 

When a candidate pose is generated, each record in the 
pose cluster list is sequentially checked whether i t  is 
similar to  the candidate pose. To cut the calculation 
cost, /IT - Till is first checked. If it is bigger than 
a threshold, Q, the record is skipped. Only if it is 
smaller than the threshold, 0 is calculated by using 
Eqs. (4) and (3) from R and R;. If 101 is bigger than 
a threshold, € 6 ,  the pose cluster is selected. Otherwise 
the record is skipped. 

When no similar pose can be found in the list, the 
candidate pose is registered as a new pose cluster un- 
less the number of record, k, is over the limit, k,,,. 

5.3.3 Updating Ti, Ri  and ni 

When the similar pose is selected as described in the 
previous subsection, Ti, Ri and ni are updated in this 
order. is simply updated by Eq.(l). To update Ri, 
e is first calculated by Eq.(5), then 
calculated, and Ri is updated by Eq. 
size ni is incremented a t  last. 

5.3.4 Maintenance of the sorted list 

When l e i  is incremented, it should be compared with 
n j ( j  = i - 1, i - 2, ..., 1) in this order. If the j-th 
record is the first record that satisfies n j  2 nj, and if 

j # i - 1, then the i-th record and the ( j  - 1)th record 
are exchanged. Otherwise, no exchange is occurred. 

5.3.5 Termination of the clustering 

The clustering process terminates either when a size 
of the largest cluster is large enough or when the total 
number of generated pose candidates reaches a thresh- 
old. In the both cases, the largest cluster is selected as 
a candidate pose and confirmed by the backprojection. 

We can alternatively select several large clusters as 
hypotheses and test them using a correspondence pro- 
cess. This may be very effective for object detection 
in very cluttered scenes. 

Figure 5: Stability of the successive clustering in ro- 
tation space. 

6 Experimental Results 
6.1 Stability of Successive Clustering 

The clustering result of translation is independent 
of the order of translations unless the member trans- 
lations change because some different clusters exist in 
the neighborhood of the cluster. On the other hand, 
the clustering result of rotation depends on the order 
of candidate poses. We confirmed the stability of the 
algorithm by the simulation. 

In the experiment, a set of candidate poses, R, = 
{R) are generated a t  random in 00 from a given pose, 
Ro, where n shows the number of poses. Then test 
sequences are made by randomly permuting the can- 
didate poses and the successive pose clustering is tried 
for each test sequence. Let R ( j )  denote the final pose 
for the j-th test sequence. Then the distribution of 
differences in 101 is checked over all the pairs of R( j )  
and R(k) for R5, RI0 and RS0. The typical results are 
shown in Fig. 5, for 00 = 5 and 10 deg. When 00 is not 
smaller than 10 deg., the result pose difference never 
exceeds Bo/20 in the simulations. When the number 
of merged poses is 5, the result pose difference never 
exceeds O o / l O O  for any Bo. These results show tha t  
the successive pose clustering is stable enough when 
00 is no more than 10 deg. 

6.2 Experiment on Simulation Data 
(1) Air plane detection 



(a)Ri11 3d model (b)Registered model 

I I 

(c)Stereoscopic da ta  (d)Detected plane(l/2) 

I I 

I 

(c)2.5D data  (d)Registered model 

Figure 6: Experiment for airplane model. 

Figure 6 shows an experimental result for a plane 
model. In this experiment, a partial shape model as 
shown in Fig. 6(b) is registered instead of the full 3d 
model which is shown in Fig. 6 (a). The registered 
model consists of five wings, and doesn't include the 
body part. For the generated stereoscopic scene as 
shown in Fig. 6 (c), the object recognition system cor- 
rectly extracted two planes as shown in (d) and (e). 
6.3 Experiment on Real Image Data ., 

Finally;the experiments were accomplished on real 
stereoscopic data  as shown in Fig. 7. From a pair of 
images, (a) and (b), a stereoscopic line data  shown in 
(c) is derived by a line-based stereo algorithm. Then 
the stapler model as shown in (d) is matched with the 
stereoscopic data. Figure 7(e) shows the correctly 
detected pose, which is superimposed to  the 2.5D data. 

7 Conclusions 
A 3d object recognition algorithm is proposed for 

stereoscopic data. The successive pose clustering algo- 
rithm is confirmed to work with pose generation based 
on GTV matching in this paper. However, the algo- 
rithm can be applied to  other types of 3d da ta  such 
as 3d point set generated by the SVD algorithm. 
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