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Abstract 

Over the past decade, there have been numerous at- 
tempts to achieve intelligent levels of autonomy for mo- 
bile robots. Many such systems however, have intensive 
programmer-encoded knowledge and fail to operate in un- 
known environments. This leads to intelligence ought to 
be based on behavioural capabilities inspired by biologi- 
cal systems. Using this approach, a real-time active visual 
motion understanding system has been developed to de- 
tect obstacles in  a mobile robot's environment, without 
requiring a priori knowledge about the world. Robot nav- 
igation incorporating it has shown encouraging results. 

In this research, a low-level visual reaction system, 
whereby an independent agent can detect colliding threats 
without a priori knowledge, is achieved by developing 
a novel real-time optical $ow algorithm, then clustering 
retinal pixels to segment objects in  2-D space, and finally 
computing the looming aspect of objects in  the scene to 
detect possible collision. A behavioural control systems 
uses the looming aspect to navigate in the world. 

In Section 2, a modified optical flow algorithm is pre- 
sented, followed by description of the clustering step in 
Section 3. The looming aspect computation is described 
in Section 4, and the actual navigation control algorithm 
in Section 5. The last section presents concluding re- 
marks. 

1 Introduction 
2 Real-time Optical Flow Estimation 

In intelligent robot development, tasks that are trivial for 
humans, such as obstacle avoidance, become non-trivial. 
This is because a conflict exists between real-world tasks 
and the usual numerical problems that computers were 
originally designed to solve. This also explains why clas- 
sical vision methods such as that of Marr (1982), which 
suggest an explicit internal modelling of a world, have 
failed i n  dynamically changing real-world environments. 
Interestingly, biological studies suggest a natural way of 
looking at robot competence as a complex behaviour con- 
structed out of many trivial behaviours, each of which is 
simple to model and implement. Such biologically in- 
spired models often provide more robust robot control 
than traditional models. 

Our goal is to develop a biologically inspired autonomous 
robot control system in which the internal programmer- 
encoded knowledge of a world can be omitted. Further 
this system will contain an active vision module, because 
active vision not only conforms to biological systems but 
also promises to simplify and facilitate the development of 
higher level competences such as navigation. As will be 
discussed later, the combination of vision and behaviour 
(ie active vision) becomes necessary in achieving robust 
real-time perception for a robot system which interacts 
with a dynamically changing environment. 
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Optical flow is a popular technique in  dynamic scene anal- 
ysis. However, establishing correspondence in a discrete 
sequence of consecutive images involving displaced ob- 
jects is a cause of computational inefficiency in optical 
flow calculation. Spatial neighbourhood correlation (Ag- 
garwal, Davis & Martin 1981), which measures the degree 
of correspondence between two points, is computation- 
ally more efficient than other methods, including gradient- 
based approaches (Horn 1986). However, the algorithm is 
still far from providing real-time performance, which is 
necessary for developing mobile robot systems. 

The problem with conventional correlation is that it tries 
to correlate totally irrelevant pairs of points and, in fact, 
spends more time looking at irrelevant pairs than rele- 
vant ones. Our new approach to establishing correspon- 
dence relies upon an a priori relevance check between a 
candidate pair of points, and spatial correlation is com- 
puted only for relevant pairs in the two frames. Relevance 
is measured by comparing photo-signatures of the two 
points; photo-signature of a pixel is a spatially invariant 
identification based on its spatio-temporal intensity gradi- 
ents. 

Let E(x,  y, t) be the brightness at time t at an image point 
(2, y), and let the corresponding point at time t + dt be 
(x + dx, y + dy); the z and y components of the optical 
flow vector at point (x, y) are u(x, y), and v(x, y) respec- 



Figure 1 : An artist's impression of clusters of relevant pix- 
els in spatio-temporal gradient space. 

tively, and dz = u . dt and dy = v . dt; 

In the optimal case, without considering any sensor noise 
or discretization, the two points will have identical bright- 
ness: 

E ( x  + udt,y + vdt,t + dt) = E(x ,  y , t )  (1) 

The optical flow constraint equation (Horn 1986) as in 
gradient based algorithms can be derived from Equation 1 
and we get 

where u = 2,  v = 2, E, = g, E, = and 

Et = g.  Equation 2 constrains the derivatives E,, E, 
and Et to remain constant with respect to the displace- 
ment vector (u, v). The combination of these two spatial 
gradients (E, and E,) and a temporal gradient (Et)  can 
be used as a spatially invariant identification for the point 
(2, y) and is called the Photo-Signature of the pixel. Fig- 
ure 1 illustrates clusters of closely related pixels in terms 
of their corresponding Photo-Signature values. The frame 
with ice-cream cones is a dramatised plot of pixels from 
the rightmost cluster, where each ice-cream cone can be 
considered as a pixel. All the ice-cream cones have simi- 
lar spatial intensity gradients (ie E, & E,), and are mov- 
ing at a similar temporal speed (Et). The same is true 
for the frame with pigs with its associated cluster. This 
illustrates the rationale behind using Photo-Signature to 
measure relevance between pairs of points in two frames, 
whereby correlating pigs to ice-cream cones is pointless. 

This new method overcomes the problems associated with 
the gradient-based and correlation-based methods. The 
former, which utilises the constraint equation (See Equa- 
tion 2) suffers from the aperture problem (Nakayama and 
Silverman 1988, Davies 1997), which can be reduced to 
a certain extent by employing neighbourhood correlation. 
The latter lacks the means to predetermine the relevance 
of a given pair of points, which can be eliminated by us- 
ing the Photo-Signature to select candidate pairs for spa- 
tial correlation. An example of an estimated optical flow 
map and its associated images is shown in Figure 2. The 
pseudo-code for this algorithm is given in Figure 3. Given 
a sequence of 5 consecutive images, an optical flow image 
can be estimated for the 2nd least recent image from the 
sequence. 

Figure 2: Optical flow map. 

Figure 3: Pseudocode for estimating optical flow. 

3 Unsupervised Image Segmentation 

Optical flow vectors are based on pairs of points and do 
not convey information about object size. Clusters of spa- 
tially spread optical flow vectors may he used to segment 
the image and estimate object size. There are three fea- 
tures available from optical flow as input to this segmenta- 
tion process: the magnitude of an optical flow vector, and 
the x and y coordinates where the vector is defined. Spa- 
tial clusters based on these features can help detect groups 
of pixels close to each other and moving at similar speed. 
In this work, Kohonen's (1982) Self-Organising Feature 
Map (SOM) was used to cluster optical flow vectors (See 
Figure 4). 

Figure 4: Clusters formed by SOM using optical flow data 
from Figure 2. 



4 Collision Detection by 
Visual Looming 

For obstacle detection, the focus of expansion (FOE) may 
be utilised for the construction of a scene depth map 
(Davies 1997). The FOE however, is usually not known a 
priori, its calculation is non-trivial, and subject to change 
with different camera gaze directions and errors in the op- 
tical flow field. Moreover, this method only allows the 
detection of static obstacles, assuming there is no self- 
moving object in  the field of view, though this is likely 
in the real world. 

The looming characteristics of perceived objects provide 
strong and natural clues for the detection of obstacles. An 
equation for computing time-to-contact (TTC) with vi- 
sual looming was initially noted by the astronomer Hoyle 
(1957), who pointed out that 

where T is the TTC derived from an angular diame- 
ter 0 and d8/dt the temporal derivative or the rate-of- 
expansion (ROE) of a rigid spherical object moving at 
a constant speed along the line of sight. Various stud- 
ies show that humans use a similar method to help guide 
goal-directed discriminative motor action, for example in  
sport, highway-driving and aviation (Beverley and Regan 
1979, Schiff and Detwiler 1979, Todd 198 I, Kruk and Re- 
gan 1983). 

The problem is to find the size of an object (ie 8) without 
a priori knowledge about that object. Here, we utilize the 
spatial clusters based on optical flow features mentioned 
earlier. In segmenting an object, humans seem to exploit 
exploit primitive features which apply generically to arbi- 
trary objects of any shape, and consequently our approach 
is justifiable. To estimate object size from clusters of pix- 
els, an ellipse is fitted to each cluster, and either of the 
two axes lengths is used as an estimate of the correspond- 
ing object size 8. 

Each cluster of optical flow vectors is associated with two 
object clusters, the source point cluster and destination 
point cluster (see Figure ??). Thus two successive 8 val- 
ues returned over time may be used to calculate the ROE 
of the cluster, thereby enabling TTC estimation, which is 
used to obtain an obstacle image such as in Figure 6. Val- 
ues listed with various marks at the bottom of Figure 4 
represent uncalibrated TTCs for clusters having identical 
marks. The value for the cluster labelled with a darker 
X mark is reasonably small compared to others, and this 
is consistent with the actual distance to the related object 
(see the chair to the right in  Figure 2). 

Figure 6 shows an obstacle image where each pixel value 
is the thresholded TTC for its corresponding cluster. The 
brightness of each pixel i n  the image tells the robot how 
close it is to collision with the corresponding object; the 
brighter the intensity the more imminent it is to collision. 
As is seen in the figure, the obstacle detection is reason- 
ably robust, despite any clustering errors. 

Figure 5: Two temporally different eta values determined 
by a set of clustered optical flow vectors. 

Figure 6: Imminent obstacle image. 

5 Active Visual Behaviours for 
Collision Avoidance 

The active vision-based robot navigation system de- 
veloped for this project accommodates a behavioural 
stimulus-reaction mechanism that combines Brooks' sub- 
sumption architecture (1986) with Nelson's behavioural 
vision system (1991), and is illustrated in Figure 7. Lower 
layers provide information to successively higher layers, 
and suppression and inhibition of control between layers 
take place, resulting in robust robot control. 

The two layers for detecting motion and obstacles use 
the vision algorithms discussed earlier, based on Photo- 
Signature and visual looming. The Obstacle Detection 
layer, in conjunction with the Motion Detection layer, 
supplies critical visual information regarding imminent 
collision to other control layers. Because the optical flow 
estimation algorithm based on Photo-Signature requires a 
steady sequence of images, shafter encoder values, from 
which the robot can estimate the distance it has travelled, 
are used to synchronise the frame-grabbing frequency 
with a constant interval of robot movement; ie ego-motion 
estimation and image synchronization. The Gaze Control 
layer drives the alteration of camera parameters, and may 
be expanded to three active visual behaviours shown be- 
low: 

Behi~viour-1 Giving i~rrenrion lo peripheri~l rhreurs 

Rehaviour-ll Trucking the foveu 

Behaviour-Ill Direcling the gaze toward a free path 

Behaviours I & 111 are extensions of gaze change, while 
behaviour I1 is extended from gaze stabilisation (Brown 



Figure 7: Hierarchical view of the system. 

1990a, 1990b). The layers up to this level embody the ac- 
tive vision aspects of the system, and the core behaviour 
for navigation is left to the top layer. In Behaviour I, pe- 
ripheral visual threats are used to choose the system's next 
attention, while Behaviour 111 can override Behaviour I 
whenever a higher level decision such as avoiding an im- 
minent obstacle is made by the system to look for a free- 
way. Meanwhile, Behaviour I1 helps to stabilise the cam- 
era gaze so that the set of grabbed images is not affected 
by the inevitable rotational effects of robot movement. 

The top layer simply accepts a signal triggered by Be- 
haviour 111, which specifies a change in gaze direction, 
and whenever the new gaze direction is mis-aligned with 
the forward body direction of the robot, the body is rotated 
to the side where the gaze is currently fixated (ie leftlright 
with respect to the forward body direction). 
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A robot with this control system responds to nearby obsta- 
cles by turning its head to view them more closely through 
the use of foveal vision, and if an imminent collision is de- 
tected by doing so, the robot will look for free space. As 
a consequence, the body of the robot chases the head in  
an attempt to align the forward body direction to the gaze 
direction. This aligning behaviour eventually makes the 
robot to stand facing free space. 

The mobile robot in our robotics laboratory, running this 
control system, could navigate in  an unconstrained lab en- 
vironment for more than 10 minutes without any colli- 
sion. Future extensions include goal-directed navigation 
and chasing behaviour. 
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