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Abstract 

This survey reviews the implementations of the Hough 
transform on parallel systems and on special purpose 
devices. The Hough transform continuously receives 
much attention because of its usefulness both as a tool 
in industrial applications and as a step in building 
perceptual representations for computer vision tasks. Its 
computational complexity has motivated many efforts 
towards fast implementations: all parallel systems, built 
or just conceived in the last twenty years, have been 
used as a test bed for parallelization strategies. 
Furthermore, practical, dedicated real time solutions 
have emerged to meet the needs of on-line inspection. 
This paper covers SIMD, MIMD and special purpose, 
dedicated implementations. The analysis of asynthotic 
computational complexity is paired with more practical 
considerations on the feasibility of each solution. 

1 Introduction 

The Hough transform (HT) is a well established 
method to detect shapes in images. It was introduced 
originally for locating lines [ I ]  and has been later 
extended to other analytic curves (circles, ellipses); the 
so called generalized Hough transform (GHT) [2,3] 
handles the detection of shapes specified with a 
template of boundary points. The method has received 
much attention and has been used extensively in many 
application environment, notably in inspection tasks. 

The purpose of the present work is to review the 
implementations of the Hough transform on general 
purpose parallel systems and on dedicated ones: the 
main interest here is on the architecture of the systems 
on which the transform has been implemented. The 
suitability of the method for parallelism and, vice versa, 
the suitability of existing and/or proposed systems for 
efficiently embedding it are the guide-lines of this 
review. In an effort to improve the efficiency of the 
method, a number of variations to the two basic types of 
the HT have appeared. The reader is referred to the 
review papers [4,5], which cover such extensions. 

The motivation for this paper rests upon the number 
of implementations that have been given to speed up the 
computations required by this task; the Hough 
transform has been implemented on virtually every 
existing parallel system and many dedicated solutions 
have already been fabricated. The main contributions 

are here organized and grouped according to a 
categorization of the method that highlights its 
suitability for parallelization: the topology of the system 
and the match between the computation and the 
architecture are used to classify the implementations. 

2 The Hough Transform 

The Hough transform is a structural method to 
describe shapes. In this transform, a shape is 
characterized b y  a set of parameters that specify its 
pose: location, orientation, scaling factor and so on. As 
an instance, a line is specified by two parameters, a 
circle by three. The structural characterization can be 
explicit, when the shape has an analytic description (HT 
for lines, circles, ellipses); or implicit, when the shape is 
known only as a set of boundary points that make up a 
template of all possible instances (GHT). 

The transform requires that the image be pre- 
processed to identify "feature points", that is those 
locations that cany the salient information associated to 
the outline of the shape: these are obviously the 
boundary points. The coordinates of each feature point 
are used along with the structural description to identi@ 
the loci of the parameters compatible with each feature 
point. These loci are a sub-set of the "parameter space", 
the multi-dimensional hyper-space where all possible 
shape instances are mapped to different hyper-points. 
The transformation from the feature point space to the 
parameter space is also known as "voting" process: 
each feature point votes for a set of points (one of the 
loci) in the parameter space. The parameter space in 
turn is frequently referred to as "accumulator" space: 
when a quantization is introduced in the parameters, the 
space is divided into "bins" and the voting process 
accumulates the votes in the bins that make up the 
discrete approximation of the loci identified by feature 
points. 

Of the various shapes for which an analytic structural 
description is possible, lines are by large the most 
studied and the most used in practical applications. Not 
surprisingly, almost all parallel implementations of the 
HT address the line detection problem. The 
parametrizations for lines used in parallel 
implementations are: slope and ordinate intercept (m,c); 
distance from the origin and slope angle of the normal 
@,€I); slope angle and ordinate intercept ($,c) and 
intersection with image borders (sl,s2). In the last one, 
s l ,s2 (s l <s2) are the distances of the intersection points 



of a line from the lower left corner of the image 
measured along the border in counter-clock-wise 
direction. The corresponding line equations for the 
other are: 

(m,c) c = m x + y  (1) 
(P, 9) p = x c o s e + y  sin8 (2) 
(@,c> c = x t g @ +  y (3) 

For the purpose of this work, it suffices to note that 
the first one has to cope with an unbounded range of 
slope values. Obviously, the parameter space is bi- 
dimensional: the quantization of each parameter is 
usually uniform. 

The generalized version of the transform (GHT) 
describes a shape by means of the points lying on its 
boundary and uses consistently the directional 
information of the gradient along the shape's contour. 
The structural description consists of a model built by 
choosing a reference point P, and a set of boundary 
points Pb. The model is organized in a table, the so- 
called reference table, which stores the displacement 
vectors Pb-P, as a function of the direction O(Pb) of the 
gradient at Pb along the boundary of the shape. The 
number N ,  of points selected to build the template of the 
shape is the cardinality of the reference table. The 
process of votes accumulation obeys the voting rule; 
each feature point in the image space contributes as 
many votes as the entries in the reference table. The 
locations of the parameter space where such votes are to 
be accumulated are identified by composing the 
displacement vectors stored in the table with the 
position vector of the feature point. The parameter 
space must be expanded to four dimensions if the shape 
has to be detected with its orientaion and with its scale. 
This technique is very flexible, but somewhat less 
robust to noise than the analytic versions because of its 
dependance on the edge gradient direction. From the 
point of view of parallel implementation, the true 
difficulty lies in the irregular pattern of accumulator 
bins addressed with the voting rule at each feature 
point. Only few architectural solutions have been 
proposed for this formulation of the transform; they are 
covered in section 7. 

The Hough transform can be characterized as the 
composition of three transformations: the first from the 
image space I to the feature point space y ,  the second 
from the feature point space y t o  the parameter point 
space IP, the third from Tonto itself, for the detection of 
the shape instances. Let us make the following 
assumptions: the image is a bi-dimensional array of 
dimension NxN; the feature points are Nt, the number of 
votes generated by each feature point is N ,,; the 
parameters describing the shape are p and each is 
quantized into a values. Then, the time complexity of a 
straightforward implementation of the transform on the 
Von-Neuman machine depends on three factors: the 
detection of feature points, requiring O(N2) elementary 
operations; the voting process, requiring O(Nf N,,); and 
the analysis of the parameter space, requiring O(a1'). 
Moreover, the space complexity is dominated by the 
cost of the explicit representation of the whole 
parameter space with the same level of quantization for 
all parameters. 

The reduction of the complexity of the method has 
been pursued basically in two ways: by paralleling the 
voting process and the subsequent analysis of the 
parameter space; and/or by reducing the storage 
requirement. The former approach is more directly 
influenced by the architecture of the system. The space 
saving approach has given rise to various improved 
algorithms, based on a dynamic quantization of the 
parameter space, on an iterative focusing procedure for 
the voting process and on associative votes 
accumulation in small, fixed size accumulator arrays. 

3 Architectures for HT: a Taxonomy 

The proposals to implement the "standard" HT on 
machines other than the Von-Neuman system can be 
split into two dis-joint sets: proposals that map the 
algorithm onto existing general purpose parallel 
systems, and proposals which envision the design and 
construction of a special purpose, dedicated "Hough 
engine". 

The implementations on a general purpose parallel 
system can be analyzed using two criteria: the 
parallelization strategy and the embedding of the phases 
of the algorithm on the hardware available. The 
asymptotic computational complexity of the proposed 
algorithms gives a hint of the theoretical speed-up 
achievable; usually, little consideration is given to 
practical feasibility. 

The analysis of dedicated solutions is based on 
efficiency: short execution time and low cost. The 
proposed systems are reviewed with a peculiar 
emphasis on the structure of the 110 sub-system, on the 
number of the components and their technology. 
Parallelism is exploited in the time domain, leading in 
most cases to pipelined systems. 

The SIMD case 

The transformations making up the HT perform the 
same type of operation on all the elements of the 
respective co-domain. Taken in the order I+F+T+T 
they are a pipeline of tasks, each consisting of a single 
stream of elementary operations carried out on a 
number of data initially large and then smaller and 
smaller. This calls for systems that efficiently support 
the SIMD parallel modality. As a consequence of this 
peculiarity of the HT, the majority of the parallel 
implementations produced rely on SIMD architectures; 
there is no intrinsic parallelism in tasks to justify a 
MIMD architecture and the few MlMD systems on 
which the HT has been implemented are used in a sort 
of SIMD emulation. Section 4 covers SIMD 
implementations. 

A taxonomy of SIMD implementations can be based 
on the topology of the system: the basic classes are 
linear array, mesh (fixed topology, augmented, 
reconfigurable), tree, pyramid and hypercube. The point 
is: how does the topology support the transformations? 
is a single system suitable for the whole process? in 
case a single system is used anyway, which is the 



appropriate mapping between the system topology and 
the data structures involved? 

Following [6], four approaches can be identified, 
namely: image space parallelization, feature point 
space parallelization , parameter space parallelization 
and mixed feature point and parameter space 
parallelization . 

In image space parallelism processing elements 
(PEs) map directly the image space and "the image 
array is traversed by a set of counters, which follow the 
curves to be detected". Such counters accumulate votes 
by counting the number of feature points encountered. 

Feature point space parallelism is defined as a one- 
to-one association among PEs and feature points; each 
point in parameter space is examined serially, broadcast 
to the PEs and the resulting count of votes collected. 
This parallelization requires a SlMD structure with inter 
PEs data communication for the accumulation phase. 
The best topologies are those that support efficiently 
associative operations. 

Parameter space parallelism is the counterpart to 
image space parallelism, since the primary association 
is among PEs and the bins of the accumulator space; in 
this approach, the equation describing the curve is 
solved simultaneously on all PEs with different values 
of the parameters for each feature point: no 
communication among PEs is necessary and the parallel 
system maps a sub-set (2 in the mesh) of the p 
dimensions of the parameter space. If the feature points 
are themselves mapped onto the same system, 
interaction among the PEs is required to extract and 
broadcast them serially to the whole set of PEs. 

Mixed feature point and parameter space parallelism 
partitions the PEs into groups, each allocated to a single 
feature point, while the PEs within a group are 
associated to the different values of one of the p 
parameters; each PE determines the pth parameter using 
the feature point and the value of the parameter to 
which it is statically allocated and the set of p- I 
remaining parameters resulting from the scanning of the 
parameter space. 

So far, a single system is assumed for the whole 
process. The mapping of the three spaces is forced to be 
on a single topology and it is not guaranteed that the 
communication primitives available always match the 
computation. Reconfigurable systems have an 
advantage here. 

As to image space parallelism, the topologies which 
more naturally match the data structures of the three 
spaces are those which embed directly a mesh, namely 
the mesh and the pyramid. The hypercube offers mesh 
embeddings of different efficiency. The image space is 
a bi-dimensional array and can be set in correspondence 
with the mesh array either by distributing the processors 
on the image or by partitioning the image into sub- 
images and allocating each processor one such sub- 
image. Actually, most implementations assume that the 
mesh array is large enough to store the whole image. 
Feature points are easily mapped on the mesh and retain 
their location. The parameter space can be mapped 
completely when p=2, provided that the quantization 
levels are at most as many as the PEs of a row/column; 

no attempt has been made to use this topology in the 
case p>3 with an explicit embedding of the whole 
parameter space. 

The pyramid can be seen as a stack of decreasing 
edge-length arrays and has at least the same capabilities 
of the mesh, as far as mapping is concerned. Moreover, 
it can be used profitably for a pipelined implementation 
of the transform, when a stream of images has to be 
processed in a sequel. 

In image space parallelism the transformation I+Y 
is trivial, while the F+Tone  is the real issue. Even in 
the simple case p=2, this transformation involves global 
data communication, because each feature point 
contributes in the most general situation to many bins of 
the parameter space, not necessarily contiguous. 
Essentially, the data movement techniques used 
distinguish one implementation from the other. From 
this point of view, the F+Ttransformation can be seen 
as a histogramming process; the parameter space is the 
p-dimensional histogram of a population (feature 
points) spread out in a bi-dimensional space. When the 
histogram is itself bi-dimensional, as in the line 
detection problem, the histogramming process can be 
decomposed into row-column histogramming by using 
a recursive doubling technique. Alternatively, the votes 
produced by feature points can be organized in "runs" 
of contiguous packets addressed to the same bin with a 
sorting step; the length of each such packet is the count 
which has to be routed to the proper destination PE. The 
line detection problem is somewhat peculiar: feature 
points tend to retain contiguity in space and this opens 
up two more ways of collecting votes. The former 
addresses the HT as an instance of the Radon transform 
and uses projections in the image space: logically, the 
image is rotated to align feature points lying along a 
given direction with a column (row) and then a 
column/(row) histogram is performed. The latter 
directly exploits contiguity by injecting from the 
borders of the array counters that travel along the 
chosen direction and count the feature points aligned 
according to that direction: a ray tracing technique. 

The increased topology of the pyramid offers more 
paths to the movements of votes: assuming that both the 
image space and parameter space are mapped on the 
base mesh, the hierarchical interconnections of the 
remaining levels suggest a divide-and-conquer 
approach. The votes are combined within blocks of 
larger dimensions by merging smaller blocks at higher 
levels; the resulting votes are distributed back onto the 
base (the parameter space) by data movements peculiar 
of the pyramid topology. 

In feature point space parallelism, the topology of the 
system is used to support associative operations. 
Actually, the tree has been proposed, but the pyramid is 
apt as well. One can even conceive the use of a mesh 
for the generation of votes and of a special purpose 
network dedicated to the counting phase, such as the 
tree of adders that have been proposed to augment 
meshes. Reconfigurable meshes are clearly superior in 
this approach, since they can be tuned to the 
histogramming process better than fixed topologies. 

Parameter space and mixed feature point and 



parameter space parallelizations are by large the least 
used techniques; this depends on the cumbersome usage 
of the image (feature point) space they introduce. Since 
the image is usually the input data of the transform, 
mapping the parallel structure on the destination space 
(parameter) requires extensive reorganization of the 
data structure storing the image; it can either be 
allocated to an external controller. accessed seriallv and 
broadcast to the parallel system, or stored on the 
parallel system itself and routed on a pixel per pixel 
basis to the PEs acting for the bins of the accumulator. 
In either case, the parallel system topology has almost 
no influence. The mesh does not offer any peculiar 
advantage, since neighboring PEs do not interact; the 
tree has a smaller diameter and this can be used if 
imagelfeature points cannot be broadcast and must use 
the interconnections available to reach the destination 
PE. 

There is one more possibility to cast the HT on a 
parallel system which is not captured by the 
classification just reviewed. In terms of the 
characterization of the transform as a sequence of steps, 
the HT can be described as a direct mapping from the 
feature point space to the set of detected instance: 
y+S, with no explicit use of the parameter space. This 
direct transformation is best applied when a-priori 
knowledge is available on the cardinality of the 
transformed set. either because onlv a few instances of 
the sought for shape are known to' be in the scene, or 
because only a few, the most probable ones, are actually 
needed. The transformation operates a dramatic 
reduction in the cardinality of the input set; it groups 
local evidence and filters out unreliable groupings. The 
topology that best matches this process is the 
since it offers a set of meshes (local interconnections) of 
decreasing resolution (smaller cardinality). 

The MIMD case 

As already anticipated, the HT is an inherently SIMD 
computation in all its phases, since the co-domains of 
transformations are treated uniformly with the same 
sequence of instructions. The MIMD paradigm cannot 
be exploited in its widest scope and offers only 
increased flexibility in data sharing. MIMD systems are 
built out of coarse grain processors, in contrast to SlMD 
ones, where the PE is usually rather simple; thus, each 
processor in a MIMD system can address a very large 
memory space. The number of available processors is 
usually much smaller than in the SlMD case and this 
leads naturally to the problem of memory distribution 
and allocation. 

In the F+T transformation, the address space 
available for the memory can either be shared or 
partitioned: to avoid excessive contention, a complete 
mapping of both spaces on a single shared resource is 
avoided. The alternatives therefore are on the allocation 
of the feature and parameter spaces to a set of disjoint 
memory modules. Three modes are possible: input 
partitioning, output partitioning and mixed input and 
outputpartitioning [7]. The first solution is the one that 
causes the heaviest form of contention, since the shared 

resource (parameter space) is the one that undergoes the 
updating operations (vote collection). It is viable if the 
numbers of votes generated by each of the Nf feature 
point is very small, possibly 1. Output partitioning 
allows for more alternatives to the problem of 
contention in feature point space access: data replication 
and pointer replication differently trade memory for 
speed. The third strategy is possible but requires 
extensive data transmission among the processors; 
indeed, if a PE is assigned a sub-set of the parameter 
space, it must anyway analyze the whole feature point 
space and only a segment of it is readily available in its 
private memory. 

The only way to apply a true M IMD strategy consists 
of allocating different tasks to different processors. In 
the HT case, one such possibility is offered by the two 
I+F F+T steps. Careful load balancing and inter- 
processor communication are required 

Section 5 reports on the implementations falling 
within such classes. 

4 General Purpose SlMD Systems 

In the sequel, the implementations of the HT on 
general purpose SIMD systems are briefly described on 
the basic topologies of the systems. 

Linear array. The image space is fed to the array in 
rows in [S], with the N PEs concurrently computing the 
HT according to a modified ( p.8) equation. In O(N N,) 
time a single p histogram is computed. An external 
controller completes the transform in O(N, No) time. 
Two more implementations are discussed in [9]. 

Basic mesh array. in this model, we assume a 
network of NxN PEs, with fixed local interconnections. 
The diameter of the mesh and the global data 
movements of the histogram computation of the HT 
limit the time complexity to R(N). Unless otherwise 
stated, the (p,8) equation is used; also, the image space 
is mapped on the mesh on a pixel-per-PE basis. 

The first published implementation [ lo]  achieved 
O(NN,) complexity by serially computing the N,  
histograms with a recursive doubling technique. A 
slight improvement is obtained in [ l  I] by using the 
directional information extracted from the gradient at 
the feature points and voting for a subset N, of the N, 
values of the quantized 8 at each feature point. The 
complete histogram is computed in the mesh 
accumulating runs of identical (p,8) values along the 
rows, counting and finally routing them to their-final 
destination. The time complexity is O(N N,v). Linear 
time algorithms have been obtained by using the ray 
tracing technique [ I  2,131. Both proposals achieve 
O(N+ N,) time complexity. By skipping the I+F 
transformation and by loading an NfxNf mesh with 
feature point coordinates, O(Nrt N,) complexity is 
achieved in [14]. 

Augmented mesh. A possible way to improve the 
routing capability of the basic mesh consists of 
introducing local interconnection autonomy. In [I51 this 
capability is used to create groups of PEs that store co- 
linear feature points. The parameter space is not 



mapped explicitly and the algorithm detects line 
segments, their length and orientation directly in the 
image space. The mesh is divided into q vertical slices; 
within these slices, N, orientations are tested. The 
procedure is bound by O(N,(log(N/q)). 

With a different approach, a more efficient topology 
for histogram computation can be added to the basic 
mesh. A tree was used in [13], but without 
improvements with respect to the ray tracing technique. 
In [I61 the mesh is augmented with a set of trees, one 
for each row. The mesh stores Nf feature points; (p,B) 
are quantized so that N,=Np. By pipelining along the 
trees the computation of the histogram, a time 
complexity of O(N,+log(Nf/N,)) is obtained in a 
rectangular mesh of N, x (Nf/N,) PEs, where N, = ~ f " .  
A local memory of size O(N,) is required. In the same 
paper, a 3D arrangements of N, PEs is shown capable of 
computing the HT in o(N,+(NI/N,)'~) time, with the 
same local memory requirement and Nf/N, parallel 
inputs. 

An arrangement of NxN memories and of q PEs 
make up the Mesh Connected Module architecture [17]. 
This architectures partitions the memories and the PEs 
into a mesh of kxk basic modules; the m PEs in a 
module have row and column busses to ayess  the sub- 
mesh of mxm memories. As a result, q=kem. The HT is 
obtained by mapping the image space in the NxN 
memory; the N, histograms are computed in 
O(N/m+N,m) time using efficient sorting and 
histogramming primitives. 

Reconpgurable mesh. This model exploits the local 
configuration capability of the PEs to set-up row and 
column busses of various lengths at run-time. Over such 
busses, non conflicting, unit-time broadcast operations 
are assumed possible. 

The first proposal to implement the HT on this 
architecture [ f  81 exploit the recontiguration capability 
to embed the four parallelization strategies outlined in 
section 3 [6]. More algorithms have followed. In [16], a 
mesh with N.1 PEs arranged in a rectangular grid of 
Npx(Nf/Np) elements uses O(N,) local storage to 
accumulate partial histograms along the columns, with 
near-neighbor connectivity. Broadcast busses along the 
rows build up the final HT in O(Np logNfl lo4Np) time. 
As with the basic mesh algorithm, NFN,=N;-. The ray 
tracing technique is adapted to the reconfigurable mesh 
in [19]. The N x N  mesh stores the image and the 
quantization of the parameter space is such that N=N,, 
N,<tN. The ray tracing algorithm is first executed on 
sub-meshes, then the whole HT histogram is computed 
using broadcast within the sub-meshes and among sub- 
meshes, with an overall complexity O(N, log(N/N,)). A 
similar result is obtained in [20]. 

The ultimate goal of a parallel implementation is the 
so-called "constant time" execution. To achieve such a 
result, the architecture must be increased well beyond 
the reconfigurable mesh, trading more space (PEs) for 
execution speed. Various configurations of arrays have 
been used: ID, 3D and even 4D. Furthermore, increased 
interconnection autonomy is added to the 
reconfiguration busses, which are sometimes controlled 
at the bit level. 

The first constant time algorithm [21] uses o(N&) 
PEs with a parameter space quantization N, =Np. The 
topology is very rich: it consists of a stack of N, 2D 
meshes of NIWf PEs, having a lower triangular mesh on 
each column; furthermore, the first rows of each mesh 
make up another N, xNf mesh, thus building a "4D" 
structure. The algorithm broadcasts in constant time on 
the NOWI mesh all possible combinations of the N, 
feature points with the N, orientation; the mesh 
computes all p values, which are then broadcast within 
the NfxN, meshes for constant time accumulation 
through the lower triangular meshes. With the same 
assumptions on parameter space quantization and on 
feature point usage, an asynthotically better solution 
[22] uses N, Nf (logNf)- PEs. These constant time 
algorithms use the busses to propagate the required 
multi-bit values. The m bits of the busses have been 
used differently in two more architectures [23,24]. The 
interconnections between adjacent PEs can be 
controlled by proper switches at the bit level. The 
original algorithm [23] represents numbers in a base-m 
number system and shows how to compute prefix sums 
of a sequence of N bits in O(log,,N) with N PEs with 
enhanced bit-level crossover capability. Assuming a bus 
bandwidth rn=~",  prefix sums are computed in 
constant time. On the basis of this result, histograms 
take constant time as well. The HT is im~iemented on 
the basis of these constant time primitive operations. 
The first algorithm [23] uses a 3D arrangement of 
N, x N, x N, PEs (No= N,), the second [24] improves 
this result by using only N,(Nfll)  PEs in a I D  
topology. 

Tree and pyramid. In this paragraph, the analysis 
covers a few algorithms based on various types of 
hierarchical topologies: binary tree [25], homogeneous 
quad pyramid [26-301, augmented heterogeneous tree 
[31] and heterogeneous pyramid [32]. Most 
im~lementations share the use of the hierarchy to 
decrease the time complexity of the histogramming 
phase, but are otherwise quite different in the HT 
formulation. Also, some use a M-SIMD structure to 
exploit in different ways the levels of the hierarchy. A 
comparison of asymptotic time complexity is therefore 
impossible. 

The tree was use in the VON-NON system [25] to 
compute the HT according to the (m,c) parameter space 
quantization. The system Is capable of reconfiguring its 
PEs in a single linear arrangement, in a single binary 
tree or in a set of sub-trees. This last configuration is 
used to map each feature point N, at the root of a sub- 
tree. Each sub-tree has N,, PEs. The (m,c) couples are 
computed concurrently in the sub-trees in constant time. 
A double histogramming phase (one for each parameter 
space dimension) in the set of sub-trees builds the final 
HT histogram in O(N,,+N, + h), where h is the height 
of the overall VON-NON tree and is O(log N, N,). 

Quad pyramid algorithms differ in the usage of the 
parameter space, which is seldom computed 
completely. The hierarchy is often used to select only a 
subset of the (p,9) bins, namely the most voted ones. 

The complete parameter space is constructed in [26]. 
Both image and parameter space ( N =  N,= N,) are 



mapped on the base layer of the pyramid: for each 0 a 
ray tracing voting procedures is executed on pixels 
within sub-images. Partial results are transmitted to the 
middle layer of size N"X  and merged with a divide- 
and-conquer technique; finally, merged results are 
transmitted downwards to build the final HT space. The 
overall complexity is O(N, N"). Two other algorithms 
are reported in [29], with a somewhat improved 
O( N, log N) complexity. 

The approach followed in [27-28,3 1-32] avoids 
building all (p,O) bins of the Hough space; with an 
"election strategy", only strong evidence of line 
segments in the image space are hierarchically merged 
in the upper layers of the pyramid. The edge orientation 
8, of each feature points stored in base of the pyramid is 
locally paired with the corresponding p, value computed 
with respect to image space coordinates. In [27], such 
couples are merged at successive layers: clusters of 
couples from the four children PEs are merged through 
a similarity function that takes into account both 
direction and orientation, and only the strongest m 
couples are retained and transmitted upwards. Taking 
into account local sorting at each ,bit-serial PE, the 
procedure costs O(m lo@ (logm)-). In a slightly 
different way, algorithm [28] extracts the m strongest 
bins by performing the voting process in an 
intermediate layer 1, rather than in the basis. PEs in this 
layer receive from the base all feature points (with p,, 0, 
and gradient magnitude information) detected in the 
corresponding 2 ' ~ '  sub-image of the base. Only the 
strongest magnitude edge pixels are used for voting; 
then, a ranking and selection procedure similar to that 
of [27] is performed in the remaining layers of the 
pyramid. Both algorithms have the disadvantage of 
merging collinear segments located far apart in the 
image. To overcome this problem, the algorithm 
proposed in [3 11 uses a finer merging procedure, based 
on the length and on the location of line segments. To 
speed up the more complex merging, a dynamic quad- 
tree like parameter space quantization is used in the 
layers above the base. This is possible because the 
underlining architecture is a M-SIMD heterogeneous 
structure, consisting of a linear array of simple PEs in 
the base, and of a tree of Transputers in the upper 
layers. The Warwick Pyramid [32] is a set of 
heterogeneous clusters arranged as a mesh; each cluster 
is a hierarchy of three levels, having a small SIMD 
mesh of 16x 16 PEs at the basis, a controller at the 
second level, and a Transputer at the root. Each small 
mesh is augmented with a fast associative "counting" 
chip. The HT is computed within each cluster to detect 
the strongest m local bins (line segments), with the aid 
of the counting chip for fast local histogramming. 
Cooperation among Transputers of the clusters helps in 
detecting collinear segments across the meshes: a 
second voting process is executed. A multiresolution 
HT is reported in [30]. A SlMD pyramid is used to 
build a multi-resolution representation of the image: a 
Gaussian pyramid is computed first and is then 
binarized by the DOG approximation of the Laplacian 
operator (this approach requires in reality an overlapped 
pyramid, rather than a quad-connected one). The voting 

process proceeds bottom-down according to a coarse- 
to-fine strategy: the range of p and 0 at each lower layer 
is restricted logarithmically while descending the 
pyramid. The voting phase within each layer is thus 
constrained to the most promising (p,O) pairs computed 
in the layer above. Admittedly, the end result in the 
base layer highlights only the dominant line. The 
algorithms is capable of sustaining pipelined processing 
of images entering the pyramid at the base, with a 
pipelining delay between image input and HT output of 
2logN-l cycles; furthermore, each layer 1 has to store 
2(L-I) binary images, if L are the levels of the pyramid. 

Hypercube. Actual systems have been built 
according to the topology of the hypercube, namely the 
Connection Machine (models 2 and 5) and the NCUBE. 
An implementation of the HT on the CM-2 is reported 
in [33]. It applies the specialized "scan" primitives to 
efficiently collect the HT histogram. Two O(N,+ IogN) 
algorithms are reported in [34] for a SIMD hypercube 
with NxN PEs, along with experimental result obtained 
on the NCUBE systems. By mapping feature points to 
PEs and by increasing the number of PEs in the 
hypercube to O( Nf N:), an O(log N, + IogN,) algorithms 
was obtained [35]. 

5 General purpose MIMD systems 

Tasks partitioning and memory allocation strategies 
differentiate the HT algorithms on MIMD systems [7, 
36-39]. Coarse-grained processors will be denoted with 
CP. 

An implementation [7] on the OSSMA shared 
memory multiprocessor uses image and parameter 
space partitioning, but resorts to synchronization among 
CPs to prevent conflicts during image scanning. The 
NxN image is partitioned into q segments and 
distributed to q CPs; the HT (p,8) space is likewise split 
into q segments, so that each CP stores N, (N, /q) bins. 
Image scanning proceeds synchronously with the aid of 
a counter at each PE; when a feature point is detected at 
any CP, a signal is broadcast to all others, which can 
compute the x,,y,f coordinate of the feature point by 
reading the local counter. Voting for all local N,(Ne/q) 
bins proceeds without contention. 

Image input partitioning is used in an implementation 
on the BPP [37], a set of standard microprocessors with 
private and shared memory. The shared HT space is 
quantized according to the (sl ,s2) parametrization 
(OIslI  N, NIs213 N, in NxN images). Using gradient 
information, each feature point contributes a single 
(sl,s2) pair; this fact, along with the huge dimension of 
the parameter space, lowers contention in memory 
accesses (which are O(N,)) and allows to split the image 
space among the CPs. To balance CP load, image lines 
are broken down into segments and statically allocated 
to the q CPs. A (p,O) version of the HT on the same 
architecture has worse performance, due to the high 
number of votes generated O(Nl N,). 

At the cost of larger memories, the HBA system [36] 
eliminates image sharing by distributing the whole 
(binary) image to all processors, which are connected 



through a common video bus. The (p,O) space is 
partitioned. This costly arrangement avoids contention. 

The approach reported in [38-391 is focused on 
balancing the load of features points detection and 
parameter space construction among the CPs. The 
experiments on an NCUBE 10 reported in [39] 
highlight the communication overhead due to the 
distribution of detected feature points to CPs in charge 
of building a segmented HT space. Almost linear speed- 
ups were obtained when N I z  ( I / ~ ) N '  both in the native 
hypercube topology and with a mesh embedding; in 
either case, only one CP was assigned the task of 
feature point detection. 

6 Dedicated architectures 

This section covers several dedicated systems which 
target real-time execution of the HT; overall, they can 
be described as "on-line" implementation, since they 
assume serial scanning of the image (usually in row- 
major order) and try to complete the HT process within 
a frame time slot. Technology plays a major role and a 
few proposals are clearly out-dated. Nethertheless, they 
are briefly described as a reference for future, up-to- 
date alternatives. 

Systolic structures. HT systems with a systolic 
architecture usually rely on image preprocessing to 
obtain a stream of incoming feature points. The first 
such proposal [40] was based on an array A I of N ,  PEs 
in charge of computing ps and on a set A2 of N ,  arrays 
for ps accumulation. To detect collinear segments and 
to merge correctly (p,O) votes, each PE of A1 transmits 
to its A2 array the x,,y, coordinates: PEs in A2 compute 
the distance from the first xf,yf of the subsequent feature 
points contributing to the same (p,O) bin. These 
distances are bubble-sorted in a further unit and 
forwarded to a final filtering array, that detects collinear 
segments among the accumulated bins. A similar 
system [41] computes the HT for a single 0 value using 
only simple additions. Collinear segments are traced by 
examining consecutive adjacent rows of the NxN bit 
image of feature points, which is input in parallel in a 
linear array of computing cells. A subsequent routing 
array and a further accumulator array complete the 
process. The area-time AT complexity of this system is 
O(N' N ,  N ,  IogN), a factor N  smaller than in [40]. 

A HT implementation suitable for any analytic shape 
is reported on the WARP systolic array [42]. PEs in 
WARP are much more powerful than in other systolic 
system, since they are equipped with a considerable 
local memory and can be programmed to execute 
various local operations. Each PE stores a section of the 
parameter space and computes a partial histogram for 
each feature point that passes through it. The array of 
PEs is then used to extract a subset of the most voted 
bins. 

The systolic approach followed in [43] is based on a 
revised (m,c) parametrization that avoids unbounded m 
values by using four sub-systems and by properly 
exchanges the roles of x and y in the line equation. The 
major outcome of this new formulation is use of simple 

additions and shift operations. Only 4N, adders are 
necessary to complete the HT in O(Nf + log N,) time. 

Pipeline systems. The implementations grouped in 
this family [44-481 differ considerably in the set-up of 
pipeline of processing units. At the macro level, the first 
stage of the pipeline takes care of the I+Ymapping; 
the potential explosion of votes generated by the second 
stage (!,F+!Q is partially solved with buffering FIFOs. 
Standard memory banks map the parameter space and 
their set-up and speed conditions the accumulating 
phase and final peak detection. 

The proposed F E  system [44] uses a K-stage 
pipeline of modules: a module is devoted to computing 
the HT histogram for a single 0 orientation and uses 
pre-stored lookup tables to avoid time-consuming 
multiplications. The HT Real Time Processor [45] 
builds a three-stage pipeline with off-the-shell MSI 
components: a 1024 FIFO stores detected feature points 
during a row-ma.jor image scan. Two subsequent stages 
compute votes and build the histogram: even though a 
double buffering scheme allows an histogram to be 
accumulated concurrently with the generation of a new 
set of votes, the speed of the parameter space memories 
is the bottleneck in the pipeline. 

A recent system [48] uses fast memories and FPGA 
components. An internal pipelined unit is capable of 
accumulating the histogram of a single p for 64 0 values 
in 5.3 ms, with a conservative clock running at 12 MHz. 
A 128 128 image can be read from external memory 
and processed in 1 1.17 ms, under the assumption that it 
contains N l =  (1110) N' feature points and that p is 
quantized into 256 values. This result is obtained 
because the accumulating memories are as fast as the 
internal pipeline that generates the votes. 

Other systems. Other specific HT implementations 
use approaches that cannot be classified in any specific 
way. It is worth noting that industrial chips have been 
marketed to support the histogramming phase of HT 
[@I. 

A complex implementation based on wafer scale 
integration is reported in [50]. The wafer silicon area is 
allocated partly to multiply-and-accumulate cells, partly 
to statically routed connections and is used only for the 
computation of the HT histogram. The system is able to 
execute the HT almost at frame rate. Edge pixels enter 
the wafer at a rate of 5 MHz; 4 p values are sent out 
every 200 ns, so that the output of the total 64 0 values 
takes 3.2 psec. These data are used to address external 
memory, with a read-modify-write cycle of 200 ns. A 
256x256 image, at a throughput rate of 3.2 ps for edge 
pixel, can be processed in about 200 ms. If 
N,= (1110) N ,  the time for the HT implementation is 
about 20 ms. 

Content addressable memories [ 5  I]  are used in the 
HiPIC system both for line [52] and for circle detection 
[53]. The 336-Kbit CAM chip has 4K words: each word 
contains 84 search bits, 72 of which are writable. The 
CAM supports maskable search, read and maskable 
write operations and generates single-hit and multi-hit 
flags. True real-time HT processing is achieved. In the 
HT algorithm, each CAM word is associated to a (p,O) 
bin. The writable part of a each word is split into a 



decision field and into an accumulator field: the 
decision fields store all possible intersections of lines 
with a single image row and are updated easily at each 
new image line. During row major image scanning, all 
decision fields that match the current feature point y, 
coordinate are flagged and parallel voting into the 
accumulator fields occurs at the end of each line. A 
64x64 parameter space is mapped completly in a single 
CAM chip and its histogram is accumulated in 0.7 ms. 
Using symmetry due to line orientations and mapping 
four accumulators and four hit-flag fields in a single 
CAM word), a 256x256 image is processed against a 
256x256 parameter space in 15.1 ms; four CAM chips 
process a 5 12x5 12 image in 19.1 ms. 

Very simple and efficient HT solutions are based on 
simple serial counters [54] and on analogue processing 
E551. 

7 The Generalized Hough Transform 

A serial implementation of the GHT to detect shapes 
described by N,, points, considering No orientations and 
N, scales requires O(N,N, No N.,) operations on a NxN 
image containing Nf feature points. The space required 
to represent the 4D parameter space is itself huge. 
Furthermore, the almost random direction of edge 
gradients in images gives rise to randomly distributed 
votes in the GHT space, making parallel processing on 
any architecture very difficult. This section analyzes the 
few hardware im~lementations of the GHT: each takes 
a different apprbach and often considers' a reduced 
version of the transform (no orientation, no scale). 

A cache-based GHT [56-581 tackles the reduction of 
parameters space. ~ l t h o u g h  conceived for a reduced 
GHT, it is based on a very general principle; the 
parameter space is substituted with a small content 
addressable memory, which only stores voted bins. 
Once the memory fills up, a flushing operation is 
required: thresholding is the simplest approach, but 
hierarchical based strategies based on multiple caches 
have been suggested as well. 

A special purpose chip-set for the reduced GHT has 
been designed to overcome the same problem [59-611 
and to cope with real-time implementation. The 
underlining idea is that the displacement vectors stored 
in the reference table have a magnitude d bound by the 
radius of the circle enclosing theshape. Usually, such d 
is much smaller than the image size N .  During row 
major scanning of the image, votes cannot be outside 
the 2d rows centered on the current one. By keeping 
"old strong" accumulated votes and discarding the weak 
ones, the memory requirement can be dramatically 
reduced. The chip-set consists of an edge extractor chip, 
a voting chip, and a systolic accumulator queue capable 
of on-line accumulating and sorting votes. It is possible 
to show that shape orientation can be detected by a 
single second GHT using a new reference table with a 
second reference point. 

The same principle is applied to map the GHT on 
simple meshes [62]. By local shift operations i; a dxd 
window, the GHT can be computed in O(N,, d log N )  

time. This result does not take into account the 
increased flexibility of reconfigurable meshes. An 
investigation of the use of CM-2 system is reported in 
[63]. The reduced GHT is implemented according to the 
local shift operation approach described in [62] using a 
mesh embedded in the underlining hypercube, or as a 
generalized histogram, using the "send and accumulate" 
primitives of the CM-2 system. The efficiency depends 
heavily on the ratio of "virtual" to physical processors 
(VPR), since the three spaces (image, features and 
parameters) map differently on the hypercube. The 
"send-and-accumulate" algorithm proves better on the 
32K processor CM-2; the larger VPR, the higher the 
speed-up. 

A fast "linear" GHT is proposed in [64]: conflicts in 
the accumulation phase are reduced by replacing peaks 
in parameter space with linear numeric patterns. A 
parallel implementation on a SIMD linear array is 
reported. A hierarchical processing scheme and an 
inverse GHT are the basis of an algorithm [65] suitable 
for pyramid machines. A shape is described at more 
resolutions through scaled down reference tables: 
voting starts at a coarse resolution and a refinement is 
obtained by using a more detailed reference table on the 
projected accumulator space. This method is based on 
an inverse voting process (from P b a c k  to 3 and on 
mirrored reference tables. 

8 Conclusions 

Work on efficient implementations of the Hough 
transform continues steadily in recent years. 
Approaches not reported here are those based on neural 
networks and on optical processing. The latter dispenses 
with numerical problems and takes advantage of the 
speed-of-light processing rate. It is still hampered by the 
limited transduction capabilities of electro-optical 
devices, which allow for limited image resolutions. The 
decline in general purpose parallel processing systems 
makes the special purpose approach more promising: 
VLSI technology improves on and on, with a declining 
cost in the realization of ASIC circuits. The emergence 
of very fast DSPs, embedding parallel sub-units (the 
Texas Instruments C80 family is just an example) might 
offer the opportunity to capitalize on the "fancy" efforts 
at paralleling the HT meanwhile using standard, 
advanced industrial components. 
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