
MVA '96 IAPR Workshop on Machine Vision Applications, November. 12-14, 1996, Tokyo, Japan

Architectures for the Hough Transform: a Survey
Marco Ferretti Maria Grazia Albanesi

Dipartimento di Informatica e Sistemistica Dipartimento di Informatica e Sistemistica
University of Pavia, Italy University of Pavia, Italy

E-mail:FERRETTI@IPVMV1.UNIPV.IT E-mail:ALBANESI@IPVMVl.UNIPV.IT

Abstract

This survey reviews the implementations of the Hough
transform on parallel systems and on special purpose
devices. The Hough transform continuously receives
much attention because of its usefulness both as a tool
in industrial applications and as a step in building
perceptual representations for computer vision tasks. Its
computational complexity has motivated many efforts
towards fast implementations: all parallel systems, built
or just conceived in the last twenty years, have been
used as a test bed for parallelization strategies.
Furthermore, practical, dedicated real time solutions
have emerged to meet the needs of on-line inspection.
This paper covers SIMD, MIMD and special purpose,
dedicated implementations. The analysis of asynthotic
computational complexity is paired with more practical
considerations on the feasibility of each solution.

1 Introduction

The Hough transform (HT) is a well established
method to detect shapes in images. It was introduced
originally for locating lines [I] and has been later
extended to other analytic curves (circles, ellipses); the
so called generalized Hough transform (GHT) [2,3]
handles the detection of shapes specified with a
template of boundary points. The method has received
much attention and has been used extensively in many
application environment, notably in inspection tasks.

The purpose of the present work is to review the
implementations of the Hough transform on general
purpose parallel systems and on dedicated ones: the
main interest here is on the architecture of the systems
on which the transform has been implemented. The
suitability of the method for parallelism and, vice versa,
the suitability of existing and/or proposed systems for
efficiently embedding it are the guide-lines of this
review. In an effort to improve the efficiency of the
method, a number of variations to the two basic types of
the HT have appeared. The reader is referred to the
review papers [4,5], which cover such extensions.

The motivation for this paper rests upon the number
of implementations that have been given to speed up the
computations required by this task; the Hough
transform has been implemented on virtually every
existing parallel system and many dedicated solutions
have already been fabricated. The main contributions

are here organized and grouped according to a
categorization of the method that highlights its
suitability for parallelization: the topology of the system
and the match between the computation and the
architecture are used to classify the implementations.

2 The Hough Transform

The Hough transform is a structural method to
describe shapes. In this transform, a shape is
characterized b y a set of parameters that specify its
pose: location, orientation, scaling factor and so on. As
an instance, a line is specified by two parameters, a
circle by three. The structural characterization can be
explicit, when the shape has an analytic description (HT
for lines, circles, ellipses); or implicit, when the shape is
known only as a set of boundary points that make up a
template of all possible instances (GHT).

The transform requires that the image be pre-
processed to identify "feature points", that is those
locations that cany the salient information associated to
the outline of the shape: these are obviously the
boundary points. The coordinates of each feature point
are used along with the structural description to identi@
the loci of the parameters compatible with each feature
point. These loci are a sub-set of the "parameter space",
the multi-dimensional hyper-space where all possible
shape instances are mapped to different hyper-points.
The transformation from the feature point space to the
parameter space is also known as "voting" process:
each feature point votes for a set of points (one of the
loci) in the parameter space. The parameter space in
turn is frequently referred to as "accumulator" space:
when a quantization is introduced in the parameters, the
space is divided into "bins" and the voting process
accumulates the votes in the bins that make up the
discrete approximation of the loci identified by feature
points.

Of the various shapes for which an analytic structural
description is possible, lines are by large the most
studied and the most used in practical applications. Not
surprisingly, almost all parallel implementations of the
HT address the line detection problem. The
parametrizations for lines used in parallel
implementations are: slope and ordinate intercept (m,c);
distance from the origin and slope angle of the normal
@,€I); slope angle and ordinate intercept ($,c) and
intersection with image borders (sl,s2). In the last one,
s l ,s2 (s l <s2) are the distances of the intersection points

of a line from the lower left corner of the image
measured along the border in counter-clock-wise
direction. The corresponding line equations for the
other are:

(m,c) c = m x + y (1)
(P, 9) p = x c o s e + y sin8 (2)
(@,c> c = x t g @ + y (3)

For the purpose of this work, it suffices to note that
the first one has to cope with an unbounded range of
slope values. Obviously, the parameter space is bi-
dimensional: the quantization of each parameter is
usually uniform.

The generalized version of the transform (GHT)
describes a shape by means of the points lying on its
boundary and uses consistently the directional
information of the gradient along the shape's contour.
The structural description consists of a model built by
choosing a reference point P, and a set of boundary
points Pb. The model is organized in a table, the so-
called reference table, which stores the displacement
vectors Pb-P, as a function of the direction O(Pb) of the
gradient at Pb along the boundary of the shape. The
number N , of points selected to build the template of the
shape is the cardinality of the reference table. The
process of votes accumulation obeys the voting rule;
each feature point in the image space contributes as
many votes as the entries in the reference table. The
locations of the parameter space where such votes are to
be accumulated are identified by composing the
displacement vectors stored in the table with the
position vector of the feature point. The parameter
space must be expanded to four dimensions if the shape
has to be detected with its orientaion and with its scale.
This technique is very flexible, but somewhat less
robust to noise than the analytic versions because of its
dependance on the edge gradient direction. From the
point of view of parallel implementation, the true
difficulty lies in the irregular pattern of accumulator
bins addressed with the voting rule at each feature
point. Only few architectural solutions have been
proposed for this formulation of the transform; they are
covered in section 7.

The Hough transform can be characterized as the
composition of three transformations: the first from the
image space I to the feature point space y , the second
from the feature point space y t o the parameter point
space IP, the third from Tonto itself, for the detection of
the shape instances. Let us make the following
assumptions: the image is a bi-dimensional array of
dimension NxN; the feature points are Nt, the number of
votes generated by each feature point is N ,,; the
parameters describing the shape are p and each is
quantized into a values. Then, the time complexity of a
straightforward implementation of the transform on the
Von-Neuman machine depends on three factors: the
detection of feature points, requiring O(N2) elementary
operations; the voting process, requiring O(Nf N,,); and
the analysis of the parameter space, requiring O(a1').
Moreover, the space complexity is dominated by the
cost of the explicit representation of the whole
parameter space with the same level of quantization for
all parameters.

The reduction of the complexity of the method has
been pursued basically in two ways: by paralleling the
voting process and the subsequent analysis of the
parameter space; and/or by reducing the storage
requirement. The former approach is more directly
influenced by the architecture of the system. The space
saving approach has given rise to various improved
algorithms, based on a dynamic quantization of the
parameter space, on an iterative focusing procedure for
the voting process and on associative votes
accumulation in small, fixed size accumulator arrays.

3 Architectures for HT: a Taxonomy

The proposals to implement the "standard" HT on
machines other than the Von-Neuman system can be
split into two dis-joint sets: proposals that map the
algorithm onto existing general purpose parallel
systems, and proposals which envision the design and
construction of a special purpose, dedicated "Hough
engine".

The implementations on a general purpose parallel
system can be analyzed using two criteria: the
parallelization strategy and the embedding of the phases
of the algorithm on the hardware available. The
asymptotic computational complexity of the proposed
algorithms gives a hint of the theoretical speed-up
achievable; usually, little consideration is given to
practical feasibility.

The analysis of dedicated solutions is based on
efficiency: short execution time and low cost. The
proposed systems are reviewed with a peculiar
emphasis on the structure of the 110 sub-system, on the
number of the components and their technology.
Parallelism is exploited in the time domain, leading in
most cases to pipelined systems.

The SIMD case

The transformations making up the HT perform the
same type of operation on all the elements of the
respective co-domain. Taken in the order I+F+T+T
they are a pipeline of tasks, each consisting of a single
stream of elementary operations carried out on a
number of data initially large and then smaller and
smaller. This calls for systems that efficiently support
the SIMD parallel modality. As a consequence of this
peculiarity of the HT, the majority of the parallel
implementations produced rely on SIMD architectures;
there is no intrinsic parallelism in tasks to justify a
MIMD architecture and the few MlMD systems on
which the HT has been implemented are used in a sort
of SIMD emulation. Section 4 covers SIMD
implementations.

A taxonomy of SIMD implementations can be based
on the topology of the system: the basic classes are
linear array, mesh (fixed topology, augmented,
reconfigurable), tree, pyramid and hypercube. The point
is: how does the topology support the transformations?
is a single system suitable for the whole process? in
case a single system is used anyway, which is the

appropriate mapping between the system topology and
the data structures involved?

Following [6], four approaches can be identified,
namely: image space parallelization, feature point
space parallelization , parameter space parallelization
and mixed feature point and parameter space
parallelization .

In image space parallelism processing elements
(PEs) map directly the image space and "the image
array is traversed by a set of counters, which follow the
curves to be detected". Such counters accumulate votes
by counting the number of feature points encountered.

Feature point space parallelism is defined as a one-
to-one association among PEs and feature points; each
point in parameter space is examined serially, broadcast
to the PEs and the resulting count of votes collected.
This parallelization requires a SlMD structure with inter
PEs data communication for the accumulation phase.
The best topologies are those that support efficiently
associative operations.

Parameter space parallelism is the counterpart to
image space parallelism, since the primary association
is among PEs and the bins of the accumulator space; in
this approach, the equation describing the curve is
solved simultaneously on all PEs with different values
of the parameters for each feature point: no
communication among PEs is necessary and the parallel
system maps a sub-set (2 in the mesh) of the p
dimensions of the parameter space. If the feature points
are themselves mapped onto the same system,
interaction among the PEs is required to extract and
broadcast them serially to the whole set of PEs.

Mixed feature point and parameter space parallelism
partitions the PEs into groups, each allocated to a single
feature point, while the PEs within a group are
associated to the different values of one of the p
parameters; each PE determines the pth parameter using
the feature point and the value of the parameter to
which it is statically allocated and the set of p- I
remaining parameters resulting from the scanning of the
parameter space.

So far, a single system is assumed for the whole
process. The mapping of the three spaces is forced to be
on a single topology and it is not guaranteed that the
communication primitives available always match the
computation. Reconfigurable systems have an
advantage here.

As to image space parallelism, the topologies which
more naturally match the data structures of the three
spaces are those which embed directly a mesh, namely
the mesh and the pyramid. The hypercube offers mesh
embeddings of different efficiency. The image space is
a bi-dimensional array and can be set in correspondence
with the mesh array either by distributing the processors
on the image or by partitioning the image into sub-
images and allocating each processor one such sub-
image. Actually, most implementations assume that the
mesh array is large enough to store the whole image.
Feature points are easily mapped on the mesh and retain
their location. The parameter space can be mapped
completely when p=2, provided that the quantization
levels are at most as many as the PEs of a row/column;

no attempt has been made to use this topology in the
case p>3 with an explicit embedding of the whole
parameter space.

The pyramid can be seen as a stack of decreasing
edge-length arrays and has at least the same capabilities
of the mesh, as far as mapping is concerned. Moreover,
it can be used profitably for a pipelined implementation
of the transform, when a stream of images has to be
processed in a sequel.

In image space parallelism the transformation I+Y
is trivial, while the F+Tone is the real issue. Even in
the simple case p=2, this transformation involves global
data communication, because each feature point
contributes in the most general situation to many bins of
the parameter space, not necessarily contiguous.
Essentially, the data movement techniques used
distinguish one implementation from the other. From
this point of view, the F+Ttransformation can be seen
as a histogramming process; the parameter space is the
p-dimensional histogram of a population (feature
points) spread out in a bi-dimensional space. When the
histogram is itself bi-dimensional, as in the line
detection problem, the histogramming process can be
decomposed into row-column histogramming by using
a recursive doubling technique. Alternatively, the votes
produced by feature points can be organized in "runs"
of contiguous packets addressed to the same bin with a
sorting step; the length of each such packet is the count
which has to be routed to the proper destination PE. The
line detection problem is somewhat peculiar: feature
points tend to retain contiguity in space and this opens
up two more ways of collecting votes. The former
addresses the HT as an instance of the Radon transform
and uses projections in the image space: logically, the
image is rotated to align feature points lying along a
given direction with a column (row) and then a
column/(row) histogram is performed. The latter
directly exploits contiguity by injecting from the
borders of the array counters that travel along the
chosen direction and count the feature points aligned
according to that direction: a ray tracing technique.

The increased topology of the pyramid offers more
paths to the movements of votes: assuming that both the
image space and parameter space are mapped on the
base mesh, the hierarchical interconnections of the
remaining levels suggest a divide-and-conquer
approach. The votes are combined within blocks of
larger dimensions by merging smaller blocks at higher
levels; the resulting votes are distributed back onto the
base (the parameter space) by data movements peculiar
of the pyramid topology.

In feature point space parallelism, the topology of the
system is used to support associative operations.
Actually, the tree has been proposed, but the pyramid is
apt as well. One can even conceive the use of a mesh
for the generation of votes and of a special purpose
network dedicated to the counting phase, such as the
tree of adders that have been proposed to augment
meshes. Reconfigurable meshes are clearly superior in
this approach, since they can be tuned to the
histogramming process better than fixed topologies.

Parameter space and mixed feature point and

parameter space parallelizations are by large the least
used techniques; this depends on the cumbersome usage
of the image (feature point) space they introduce. Since
the image is usually the input data of the transform,
mapping the parallel structure on the destination space
(parameter) requires extensive reorganization of the
data structure storing the image; it can either be
allocated to an external controller. accessed seriallv and
broadcast to the parallel system, or stored on the
parallel system itself and routed on a pixel per pixel
basis to the PEs acting for the bins of the accumulator.
In either case, the parallel system topology has almost
no influence. The mesh does not offer any peculiar
advantage, since neighboring PEs do not interact; the
tree has a smaller diameter and this can be used if
imagelfeature points cannot be broadcast and must use
the interconnections available to reach the destination
PE.

There is one more possibility to cast the HT on a
parallel system which is not captured by the
classification just reviewed. In terms of the
characterization of the transform as a sequence of steps,
the HT can be described as a direct mapping from the
feature point space to the set of detected instance:
y+S, with no explicit use of the parameter space. This
direct transformation is best applied when a-priori
knowledge is available on the cardinality of the
transformed set. either because onlv a few instances of
the sought for shape are known to' be in the scene, or
because only a few, the most probable ones, are actually
needed. The transformation operates a dramatic
reduction in the cardinality of the input set; it groups
local evidence and filters out unreliable groupings. The
topology that best matches this process is the
since it offers a set of meshes (local interconnections) of
decreasing resolution (smaller cardinality).

The MIMD case

As already anticipated, the HT is an inherently SIMD
computation in all its phases, since the co-domains of
transformations are treated uniformly with the same
sequence of instructions. The MIMD paradigm cannot
be exploited in its widest scope and offers only
increased flexibility in data sharing. MIMD systems are
built out of coarse grain processors, in contrast to SlMD
ones, where the PE is usually rather simple; thus, each
processor in a MIMD system can address a very large
memory space. The number of available processors is
usually much smaller than in the SlMD case and this
leads naturally to the problem of memory distribution
and allocation.

In the F+T transformation, the address space
available for the memory can either be shared or
partitioned: to avoid excessive contention, a complete
mapping of both spaces on a single shared resource is
avoided. The alternatives therefore are on the allocation
of the feature and parameter spaces to a set of disjoint
memory modules. Three modes are possible: input
partitioning, output partitioning and mixed input and
outputpartitioning [7]. The first solution is the one that
causes the heaviest form of contention, since the shared

resource (parameter space) is the one that undergoes the
updating operations (vote collection). It is viable if the
numbers of votes generated by each of the Nf feature
point is very small, possibly 1. Output partitioning
allows for more alternatives to the problem of
contention in feature point space access: data replication
and pointer replication differently trade memory for
speed. The third strategy is possible but requires
extensive data transmission among the processors;
indeed, if a PE is assigned a sub-set of the parameter
space, it must anyway analyze the whole feature point
space and only a segment of it is readily available in its
private memory.

The only way to apply a true M IMD strategy consists
of allocating different tasks to different processors. In
the HT case, one such possibility is offered by the two
I+F F+T steps. Careful load balancing and inter-
processor communication are required

Section 5 reports on the implementations falling
within such classes.

4 General Purpose SlMD Systems

In the sequel, the implementations of the HT on
general purpose SIMD systems are briefly described on
the basic topologies of the systems.

Linear array. The image space is fed to the array in
rows in [S], with the N PEs concurrently computing the
HT according to a modified (p.8) equation. In O(N N,)
time a single p histogram is computed. An external
controller completes the transform in O(N, No) time.
Two more implementations are discussed in [9].

Basic mesh array. in this model, we assume a
network of NxN PEs, with fixed local interconnections.
The diameter of the mesh and the global data
movements of the histogram computation of the HT
limit the time complexity to R(N). Unless otherwise
stated, the (p,8) equation is used; also, the image space
is mapped on the mesh on a pixel-per-PE basis.

The first published implementation [lo] achieved
O(NN,) complexity by serially computing the N,
histograms with a recursive doubling technique. A
slight improvement is obtained in [l I] by using the
directional information extracted from the gradient at
the feature points and voting for a subset N, of the N,
values of the quantized 8 at each feature point. The
complete histogram is computed in the mesh
accumulating runs of identical (p,8) values along the
rows, counting and finally routing them to their-final
destination. The time complexity is O(N N,v). Linear
time algorithms have been obtained by using the ray
tracing technique [I 2,131. Both proposals achieve
O(N+ N,) time complexity. By skipping the I+F
transformation and by loading an NfxNf mesh with
feature point coordinates, O(Nrt N,) complexity is
achieved in [14].

Augmented mesh. A possible way to improve the
routing capability of the basic mesh consists of
introducing local interconnection autonomy. In [I51 this
capability is used to create groups of PEs that store co-
linear feature points. The parameter space is not

mapped explicitly and the algorithm detects line
segments, their length and orientation directly in the
image space. The mesh is divided into q vertical slices;
within these slices, N, orientations are tested. The
procedure is bound by O(N,(log(N/q)).

With a different approach, a more efficient topology
for histogram computation can be added to the basic
mesh. A tree was used in [13], but without
improvements with respect to the ray tracing technique.
In [I61 the mesh is augmented with a set of trees, one
for each row. The mesh stores Nf feature points; (p,B)
are quantized so that N,=Np. By pipelining along the
trees the computation of the histogram, a time
complexity of O(N,+log(Nf/N,)) is obtained in a
rectangular mesh of N, x (Nf/N,) PEs, where N, = ~ f " .
A local memory of size O(N,) is required. In the same
paper, a 3D arrangements of N, PEs is shown capable of
computing the HT in o(N,+(NI/N,)'~) time, with the
same local memory requirement and Nf/N, parallel
inputs.

An arrangement of NxN memories and of q PEs
make up the Mesh Connected Module architecture [17].
This architectures partitions the memories and the PEs
into a mesh of kxk basic modules; the m PEs in a
module have row and column busses to ayess the sub-
mesh of mxm memories. As a result, q=kem. The HT is
obtained by mapping the image space in the NxN
memory; the N, histograms are computed in
O(N/m+N,m) time using efficient sorting and
histogramming primitives.

Reconpgurable mesh. This model exploits the local
configuration capability of the PEs to set-up row and
column busses of various lengths at run-time. Over such
busses, non conflicting, unit-time broadcast operations
are assumed possible.

The first proposal to implement the HT on this
architecture [f 81 exploit the recontiguration capability
to embed the four parallelization strategies outlined in
section 3 [6]. More algorithms have followed. In [16], a
mesh with N.1 PEs arranged in a rectangular grid of
Npx(Nf/Np) elements uses O(N,) local storage to
accumulate partial histograms along the columns, with
near-neighbor connectivity. Broadcast busses along the
rows build up the final HT in O(Np logNfl lo4Np) time.
As with the basic mesh algorithm, NFN,=N;-. The ray
tracing technique is adapted to the reconfigurable mesh
in [19]. The N x N mesh stores the image and the
quantization of the parameter space is such that N=N,,
N,<tN. The ray tracing algorithm is first executed on
sub-meshes, then the whole HT histogram is computed
using broadcast within the sub-meshes and among sub-
meshes, with an overall complexity O(N, log(N/N,)). A
similar result is obtained in [20].

The ultimate goal of a parallel implementation is the
so-called "constant time" execution. To achieve such a
result, the architecture must be increased well beyond
the reconfigurable mesh, trading more space (PEs) for
execution speed. Various configurations of arrays have
been used: ID, 3D and even 4D. Furthermore, increased
interconnection autonomy is added to the
reconfiguration busses, which are sometimes controlled
at the bit level.

The first constant time algorithm [21] uses o(N&)
PEs with a parameter space quantization N, =Np. The
topology is very rich: it consists of a stack of N, 2D
meshes of NIWf PEs, having a lower triangular mesh on
each column; furthermore, the first rows of each mesh
make up another N, xNf mesh, thus building a "4D"
structure. The algorithm broadcasts in constant time on
the NOWI mesh all possible combinations of the N,
feature points with the N, orientation; the mesh
computes all p values, which are then broadcast within
the NfxN, meshes for constant time accumulation
through the lower triangular meshes. With the same
assumptions on parameter space quantization and on
feature point usage, an asynthotically better solution
[22] uses N, Nf (logNf)- PEs. These constant time
algorithms use the busses to propagate the required
multi-bit values. The m bits of the busses have been
used differently in two more architectures [23,24]. The
interconnections between adjacent PEs can be
controlled by proper switches at the bit level. The
original algorithm [23] represents numbers in a base-m
number system and shows how to compute prefix sums
of a sequence of N bits in O(log,,N) with N PEs with
enhanced bit-level crossover capability. Assuming a bus
bandwidth rn=~", prefix sums are computed in
constant time. On the basis of this result, histograms
take constant time as well. The HT is im~iemented on
the basis of these constant time primitive operations.
The first algorithm [23] uses a 3D arrangement of
N, x N, x N, PEs (No= N,), the second [24] improves
this result by using only N,(Nfll) PEs in a I D
topology.

Tree and pyramid. In this paragraph, the analysis
covers a few algorithms based on various types of
hierarchical topologies: binary tree [25], homogeneous
quad pyramid [26-301, augmented heterogeneous tree
[31] and heterogeneous pyramid [32]. Most
im~lementations share the use of the hierarchy to
decrease the time complexity of the histogramming
phase, but are otherwise quite different in the HT
formulation. Also, some use a M-SIMD structure to
exploit in different ways the levels of the hierarchy. A
comparison of asymptotic time complexity is therefore
impossible.

The tree was use in the VON-NON system [25] to
compute the HT according to the (m,c) parameter space
quantization. The system Is capable of reconfiguring its
PEs in a single linear arrangement, in a single binary
tree or in a set of sub-trees. This last configuration is
used to map each feature point N, at the root of a sub-
tree. Each sub-tree has N,, PEs. The (m,c) couples are
computed concurrently in the sub-trees in constant time.
A double histogramming phase (one for each parameter
space dimension) in the set of sub-trees builds the final
HT histogram in O(N,,+N, + h), where h is the height
of the overall VON-NON tree and is O(log N, N,).

Quad pyramid algorithms differ in the usage of the
parameter space, which is seldom computed
completely. The hierarchy is often used to select only a
subset of the (p,9) bins, namely the most voted ones.

The complete parameter space is constructed in [26].
Both image and parameter space (N = N,= N,) are

mapped on the base layer of the pyramid: for each 0 a
ray tracing voting procedures is executed on pixels
within sub-images. Partial results are transmitted to the
middle layer of size N"X and merged with a divide-
and-conquer technique; finally, merged results are
transmitted downwards to build the final HT space. The
overall complexity is O(N, N"). Two other algorithms
are reported in [29], with a somewhat improved
O(N, log N) complexity.

The approach followed in [27-28,3 1-32] avoids
building all (p,O) bins of the Hough space; with an
"election strategy", only strong evidence of line
segments in the image space are hierarchically merged
in the upper layers of the pyramid. The edge orientation
8, of each feature points stored in base of the pyramid is
locally paired with the corresponding p, value computed
with respect to image space coordinates. In [27], such
couples are merged at successive layers: clusters of
couples from the four children PEs are merged through
a similarity function that takes into account both
direction and orientation, and only the strongest m
couples are retained and transmitted upwards. Taking
into account local sorting at each ,bit-serial PE, the
procedure costs O(m lo@ (logm)-). In a slightly
different way, algorithm [28] extracts the m strongest
bins by performing the voting process in an
intermediate layer 1, rather than in the basis. PEs in this
layer receive from the base all feature points (with p,, 0,
and gradient magnitude information) detected in the
corresponding 2 ' ~ ' sub-image of the base. Only the
strongest magnitude edge pixels are used for voting;
then, a ranking and selection procedure similar to that
of [27] is performed in the remaining layers of the
pyramid. Both algorithms have the disadvantage of
merging collinear segments located far apart in the
image. To overcome this problem, the algorithm
proposed in [3 11 uses a finer merging procedure, based
on the length and on the location of line segments. To
speed up the more complex merging, a dynamic quad-
tree like parameter space quantization is used in the
layers above the base. This is possible because the
underlining architecture is a M-SIMD heterogeneous
structure, consisting of a linear array of simple PEs in
the base, and of a tree of Transputers in the upper
layers. The Warwick Pyramid [32] is a set of
heterogeneous clusters arranged as a mesh; each cluster
is a hierarchy of three levels, having a small SIMD
mesh of 16x 16 PEs at the basis, a controller at the
second level, and a Transputer at the root. Each small
mesh is augmented with a fast associative "counting"
chip. The HT is computed within each cluster to detect
the strongest m local bins (line segments), with the aid
of the counting chip for fast local histogramming.
Cooperation among Transputers of the clusters helps in
detecting collinear segments across the meshes: a
second voting process is executed. A multiresolution
HT is reported in [30]. A SlMD pyramid is used to
build a multi-resolution representation of the image: a
Gaussian pyramid is computed first and is then
binarized by the DOG approximation of the Laplacian
operator (this approach requires in reality an overlapped
pyramid, rather than a quad-connected one). The voting

process proceeds bottom-down according to a coarse-
to-fine strategy: the range of p and 0 at each lower layer
is restricted logarithmically while descending the
pyramid. The voting phase within each layer is thus
constrained to the most promising (p,O) pairs computed
in the layer above. Admittedly, the end result in the
base layer highlights only the dominant line. The
algorithms is capable of sustaining pipelined processing
of images entering the pyramid at the base, with a
pipelining delay between image input and HT output of
2logN-l cycles; furthermore, each layer 1 has to store
2(L-I) binary images, if L are the levels of the pyramid.

Hypercube. Actual systems have been built
according to the topology of the hypercube, namely the
Connection Machine (models 2 and 5) and the NCUBE.
An implementation of the HT on the CM-2 is reported
in [33]. It applies the specialized "scan" primitives to
efficiently collect the HT histogram. Two O(N,+ IogN)
algorithms are reported in [34] for a SIMD hypercube
with NxN PEs, along with experimental result obtained
on the NCUBE systems. By mapping feature points to
PEs and by increasing the number of PEs in the
hypercube to O(Nf N:), an O(log N, + IogN,) algorithms
was obtained [35].

5 General purpose MIMD systems

Tasks partitioning and memory allocation strategies
differentiate the HT algorithms on MIMD systems [7,
36-39]. Coarse-grained processors will be denoted with
CP.

An implementation [7] on the OSSMA shared
memory multiprocessor uses image and parameter
space partitioning, but resorts to synchronization among
CPs to prevent conflicts during image scanning. The
NxN image is partitioned into q segments and
distributed to q CPs; the HT (p,8) space is likewise split
into q segments, so that each CP stores N, (N, /q) bins.
Image scanning proceeds synchronously with the aid of
a counter at each PE; when a feature point is detected at
any CP, a signal is broadcast to all others, which can
compute the x,,y,f coordinate of the feature point by
reading the local counter. Voting for all local N,(Ne/q)
bins proceeds without contention.

Image input partitioning is used in an implementation
on the BPP [37], a set of standard microprocessors with
private and shared memory. The shared HT space is
quantized according to the (sl ,s2) parametrization
(OIslI N, NIs213 N, in NxN images). Using gradient
information, each feature point contributes a single
(sl,s2) pair; this fact, along with the huge dimension of
the parameter space, lowers contention in memory
accesses (which are O(N,)) and allows to split the image
space among the CPs. To balance CP load, image lines
are broken down into segments and statically allocated
to the q CPs. A (p,O) version of the HT on the same
architecture has worse performance, due to the high
number of votes generated O(Nl N,).

At the cost of larger memories, the HBA system [36]
eliminates image sharing by distributing the whole
(binary) image to all processors, which are connected

through a common video bus. The (p,O) space is
partitioned. This costly arrangement avoids contention.

The approach reported in [38-391 is focused on
balancing the load of features points detection and
parameter space construction among the CPs. The
experiments on an NCUBE 10 reported in [39]
highlight the communication overhead due to the
distribution of detected feature points to CPs in charge
of building a segmented HT space. Almost linear speed-
ups were obtained when N I z (I / ~) N ' both in the native
hypercube topology and with a mesh embedding; in
either case, only one CP was assigned the task of
feature point detection.

6 Dedicated architectures

This section covers several dedicated systems which
target real-time execution of the HT; overall, they can
be described as "on-line" implementation, since they
assume serial scanning of the image (usually in row-
major order) and try to complete the HT process within
a frame time slot. Technology plays a major role and a
few proposals are clearly out-dated. Nethertheless, they
are briefly described as a reference for future, up-to-
date alternatives.

Systolic structures. HT systems with a systolic
architecture usually rely on image preprocessing to
obtain a stream of incoming feature points. The first
such proposal [40] was based on an array A I of N , PEs
in charge of computing ps and on a set A2 of N , arrays
for ps accumulation. To detect collinear segments and
to merge correctly (p,O) votes, each PE of A1 transmits
to its A2 array the x,,y, coordinates: PEs in A2 compute
the distance from the first xf,yf of the subsequent feature
points contributing to the same (p,O) bin. These
distances are bubble-sorted in a further unit and
forwarded to a final filtering array, that detects collinear
segments among the accumulated bins. A similar
system [41] computes the HT for a single 0 value using
only simple additions. Collinear segments are traced by
examining consecutive adjacent rows of the NxN bit
image of feature points, which is input in parallel in a
linear array of computing cells. A subsequent routing
array and a further accumulator array complete the
process. The area-time AT complexity of this system is
O(N' N , N , IogN), a factor N smaller than in [40].

A HT implementation suitable for any analytic shape
is reported on the WARP systolic array [42]. PEs in
WARP are much more powerful than in other systolic
system, since they are equipped with a considerable
local memory and can be programmed to execute
various local operations. Each PE stores a section of the
parameter space and computes a partial histogram for
each feature point that passes through it. The array of
PEs is then used to extract a subset of the most voted
bins.

The systolic approach followed in [43] is based on a
revised (m,c) parametrization that avoids unbounded m
values by using four sub-systems and by properly
exchanges the roles of x and y in the line equation. The
major outcome of this new formulation is use of simple

additions and shift operations. Only 4N, adders are
necessary to complete the HT in O(Nf + log N,) time.

Pipeline systems. The implementations grouped in
this family [44-481 differ considerably in the set-up of
pipeline of processing units. At the macro level, the first
stage of the pipeline takes care of the I+Ymapping;
the potential explosion of votes generated by the second
stage (!,F+!Q is partially solved with buffering FIFOs.
Standard memory banks map the parameter space and
their set-up and speed conditions the accumulating
phase and final peak detection.

The proposed F E system [44] uses a K-stage
pipeline of modules: a module is devoted to computing
the HT histogram for a single 0 orientation and uses
pre-stored lookup tables to avoid time-consuming
multiplications. The HT Real Time Processor [45]
builds a three-stage pipeline with off-the-shell MSI
components: a 1024 FIFO stores detected feature points
during a row-ma.jor image scan. Two subsequent stages
compute votes and build the histogram: even though a
double buffering scheme allows an histogram to be
accumulated concurrently with the generation of a new
set of votes, the speed of the parameter space memories
is the bottleneck in the pipeline.

A recent system [48] uses fast memories and FPGA
components. An internal pipelined unit is capable of
accumulating the histogram of a single p for 64 0 values
in 5.3 ms, with a conservative clock running at 12 MHz.
A 128 128 image can be read from external memory
and processed in 1 1.17 ms, under the assumption that it
contains N l = (1110) N' feature points and that p is
quantized into 256 values. This result is obtained
because the accumulating memories are as fast as the
internal pipeline that generates the votes.

Other systems. Other specific HT implementations
use approaches that cannot be classified in any specific
way. It is worth noting that industrial chips have been
marketed to support the histogramming phase of HT
[@I.

A complex implementation based on wafer scale
integration is reported in [50]. The wafer silicon area is
allocated partly to multiply-and-accumulate cells, partly
to statically routed connections and is used only for the
computation of the HT histogram. The system is able to
execute the HT almost at frame rate. Edge pixels enter
the wafer at a rate of 5 MHz; 4 p values are sent out
every 200 ns, so that the output of the total 64 0 values
takes 3.2 psec. These data are used to address external
memory, with a read-modify-write cycle of 200 ns. A
256x256 image, at a throughput rate of 3.2 ps for edge
pixel, can be processed in about 200 ms. If
N,= (1110) N , the time for the HT implementation is
about 20 ms.

Content addressable memories [5 I] are used in the
HiPIC system both for line [52] and for circle detection
[53]. The 336-Kbit CAM chip has 4K words: each word
contains 84 search bits, 72 of which are writable. The
CAM supports maskable search, read and maskable
write operations and generates single-hit and multi-hit
flags. True real-time HT processing is achieved. In the
HT algorithm, each CAM word is associated to a (p,O)
bin. The writable part of a each word is split into a

decision field and into an accumulator field: the
decision fields store all possible intersections of lines
with a single image row and are updated easily at each
new image line. During row major image scanning, all
decision fields that match the current feature point y,
coordinate are flagged and parallel voting into the
accumulator fields occurs at the end of each line. A
64x64 parameter space is mapped completly in a single
CAM chip and its histogram is accumulated in 0.7 ms.
Using symmetry due to line orientations and mapping
four accumulators and four hit-flag fields in a single
CAM word), a 256x256 image is processed against a
256x256 parameter space in 15.1 ms; four CAM chips
process a 5 12x5 12 image in 19.1 ms.

Very simple and efficient HT solutions are based on
simple serial counters [54] and on analogue processing
E551.

7 The Generalized Hough Transform

A serial implementation of the GHT to detect shapes
described by N,, points, considering No orientations and
N, scales requires O(N,N, No N.,) operations on a NxN
image containing Nf feature points. The space required
to represent the 4D parameter space is itself huge.
Furthermore, the almost random direction of edge
gradients in images gives rise to randomly distributed
votes in the GHT space, making parallel processing on
any architecture very difficult. This section analyzes the
few hardware im~lementations of the GHT: each takes
a different apprbach and often considers' a reduced
version of the transform (no orientation, no scale).

A cache-based GHT [56-581 tackles the reduction of
parameters space. ~ l t h o u g h conceived for a reduced
GHT, it is based on a very general principle; the
parameter space is substituted with a small content
addressable memory, which only stores voted bins.
Once the memory fills up, a flushing operation is
required: thresholding is the simplest approach, but
hierarchical based strategies based on multiple caches
have been suggested as well.

A special purpose chip-set for the reduced GHT has
been designed to overcome the same problem [59-611
and to cope with real-time implementation. The
underlining idea is that the displacement vectors stored
in the reference table have a magnitude d bound by the
radius of the circle enclosing theshape. Usually, such d
is much smaller than the image size N . During row
major scanning of the image, votes cannot be outside
the 2d rows centered on the current one. By keeping
"old strong" accumulated votes and discarding the weak
ones, the memory requirement can be dramatically
reduced. The chip-set consists of an edge extractor chip,
a voting chip, and a systolic accumulator queue capable
of on-line accumulating and sorting votes. It is possible
to show that shape orientation can be detected by a
single second GHT using a new reference table with a
second reference point.

The same principle is applied to map the GHT on
simple meshes [62]. By local shift operations i; a dxd
window, the GHT can be computed in O(N,, d log N)

time. This result does not take into account the
increased flexibility of reconfigurable meshes. An
investigation of the use of CM-2 system is reported in
[63]. The reduced GHT is implemented according to the
local shift operation approach described in [62] using a
mesh embedded in the underlining hypercube, or as a
generalized histogram, using the "send and accumulate"
primitives of the CM-2 system. The efficiency depends
heavily on the ratio of "virtual" to physical processors
(VPR), since the three spaces (image, features and
parameters) map differently on the hypercube. The
"send-and-accumulate" algorithm proves better on the
32K processor CM-2; the larger VPR, the higher the
speed-up.

A fast "linear" GHT is proposed in [64]: conflicts in
the accumulation phase are reduced by replacing peaks
in parameter space with linear numeric patterns. A
parallel implementation on a SIMD linear array is
reported. A hierarchical processing scheme and an
inverse GHT are the basis of an algorithm [65] suitable
for pyramid machines. A shape is described at more
resolutions through scaled down reference tables:
voting starts at a coarse resolution and a refinement is
obtained by using a more detailed reference table on the
projected accumulator space. This method is based on
an inverse voting process (from P b a c k to 3 and on
mirrored reference tables.

8 Conclusions

Work on efficient implementations of the Hough
transform continues steadily in recent years.
Approaches not reported here are those based on neural
networks and on optical processing. The latter dispenses
with numerical problems and takes advantage of the
speed-of-light processing rate. It is still hampered by the
limited transduction capabilities of electro-optical
devices, which allow for limited image resolutions. The
decline in general purpose parallel processing systems
makes the special purpose approach more promising:
VLSI technology improves on and on, with a declining
cost in the realization of ASIC circuits. The emergence
of very fast DSPs, embedding parallel sub-units (the
Texas Instruments C80 family is just an example) might
offer the opportunity to capitalize on the "fancy" efforts
at paralleling the HT meanwhile using standard,
advanced industrial components.

References

[I] P. V. C. Hough, "Method and means for
recognizing complex patterns," U.S. Patent
3069654, 1962.

[2] D. H. Ballard, "Generalizing the Hough transform
to detect arbitrary shapes," Pattern Recognit. , vol.
13, pp. 1 1 1-122, 1981.

[3] E.R. Davies, Machine Vision, Academic Press,
1990.

[4] J . Illingworth and J . Kittler, "A survey of the
Hough transform," Computer Graphics Image

Processing, vol. 44, pp. 87-1 16, 1988.
[5] V.F. Leavers, "Which Hough transform," Computer

Vision, Graphics Image Proc. - Image Understan.,
vol. 58, n. 2, pp. 250-264, 1993.

[6] M. Maresca, M. Lavin and H. Li. "Parallel Hough
transform algorithms on Polymorphic Torus
Architecture," in Multicomputer Vision, S. Levialdi
ed., ACADEMIC PRESS, 1988.

[7] D. Ben-Tzvi, A. Naqvi and M. Sandler,
"Synchronous multiprocessor implementation of
the Hough transform," Comput. Vision, Graphics
andlmage Proc., vol. 52, pp. 437-446, 1990.

[8] A.L. Fisher and P.T. Highman "Computing the
Hough transform on a scan line processors (image
processing)," IEEE Pattern Anal. Mach. Intell.,
PAM1 vol. l I, n. 3, pp. 262-265, 1989.

[9] Z.N. Li, F. Tong and R.G. Laughlin, "Parallel
algorithms for line detection on a IxN array
processor," IEEE Computer Society Press, Los
Alamitos, 1991.

[IOIT. M. Silberberg, "The Hough transform on the
Geometric Parallel Processor," IEEE Workshop on
CAPAIDM, New York, Nov. 1985, pp. 387-393.

[IIIA. Rosenfeld, J. Ornelas and Y. Hung, "Hough
transform algorithms for mesh-connected SlMD
parallel processors," Computer Graphics Image
Processing", vol. 4 1, pp. 293-305, 1988.

[12]C. Guerra, S. Hambrush, "Parallel Algorithms for
Line Detection on a Mesh," IEEE Workshop on
CAPAMI, Seattle, WA, 1987, pp. 99- 106.

[13]R.E. Cypher, J.L. Sanz and L. Snyder, "The Hough
transform has O(N) complexity on SlMD NxN
mesh array architectures", in lEEE Workshop on
CAPAMI, Seattle, WA, 1987, pp. 1 15- 12 1.

[14]C.S. Kannan and H.Y.H. Chuang, "Fast Hough
transform on a mesh connected processor array,"
Inform. Proc. Lett. , vol33, pp. 243-248, 1990.

[15]D.B. Shu, J.G. Nas, M.M. Eshaghian and K. Kim,
algorithms on an orthogonally-connected memory-
based architecture," in Proc. 10th ICPR, IEEE
Computer Society Press, vol. 11, pp. 350-355, 1990.

[16]Y. Pan and H.Y.H. Chuang, "Faster line detection
raight-Line Detection on a Gated-Connection VLSl
Network," Proc. 10th ICPR, lEEE Computer
Society Press, vol. 11, pp. 456-46 1, 1990.

[17]H.M. Alnuweiri and V.P. Kumar, "Optimal image
algorithm on enhanced mesh connected arrays,"
IEE Proc. E., vol. 140, n. 2, pp. 95- 100, 1993.

[18]M. Maresca, H. Li and M.M. Sheng, "Parallel
computation on a polymorphic torus architecture",
Machine Vision Appl., vol. 2, n. 4, pp. 215-230,
1989.

[19]J.F. Jenq and S. Sahni, "Reconfigurable mesh
Hough transform on reconfigurable meshes," Image
Vision Comput., vol l I, n. 10, pp. 623-628, 1993.

[20]S. Olariu, J.L. Schwing and J. Zhang, "Computing
uting constant time algorithm for computing Hough
transform," Pattern Recogn., vol. 26, n. 2, pp. 277-
286, 1993.

[21]T. Kao, S. Horng, Y. Wang and K. Chung, "A
gorithms for the Hough transform," J. Parallel
Distr. Computing, vol. 20, pp. 69-77, 1994.

[22] Y. Pan, "A more efficient constant time algorithm
for computing the Hough transform," Parallel
Proc. letters, vol. 4, nn. 1-2, pp. 45-52, 1994.

[23]T.W. Kao and S.J. Horng, "A O(1) time algorithm
for computing histogram and Hough transform on a
cross-bridge reconfigurable array of processor,"
IEEE Trans. Syst. Man Cybernet., vol. 25, pp. 681-
687, 1995.

[24]S. Lee, S. Horng, T. Kao and H. Tsai, "Optimal
computing Hough transform on a reconfigurable
array of processors with wider bus networks",
Pattern Recogn., vol. 29, n.4, pp. 603-61 3, 1996.

[25]H. Ibrahim, J. Render and D. Shaw, "On the
application of massively parallel SIMD tree
machines to certain intermediate-level vision
tasks," Computer Vision Graphics Image
Processing, vol. 36, pp. 53-75, 1986.

[26]G. Bongiovanni, C. Guerra and S. Levialdi,
"Computing the Hough transform on a pyramid
architecture," Machine Vision and Applications,
vol. 3, no. 2, pp. 117-123, 1990.

[27]S.T. Tanimoto, "From pixel to predicates in
pyramid machines," in From Pixel to Features, J.
C. Simon ed., Elsivier Science Publishers B. V.
(North-Holland), 1989, pp. 383-392.

[28] J.M. Jolion and A. Rosenfeld, "A O(log n) pyramid
Hough transform," Pattern Recogn. Letters, vol. 9,
pp. 343-348, 1989.

[29]A. Kavianpour and N. Bagherzadeh, "Parallel
Hough transform for image processing on a
pyramid architecture," Inter. Conf: on Parallel
Processing, pp. 1395- 1398, 199 1.

[30] M. Atiquzzaman, "Pipelined implementation of the
multiresolution Hough transform in a pyramid
multiprocessor," Pattern Recogn. Letters, vol. 15,
pp. 84 1-85 1, 1994.

[31]N.L. Ze and Z. Dampo, "Fast line detection in a
hybrid pyramid," Pattern Recogn. Letters, vol. 14,
N. I , pp. 53-63, 1993.

[32]N. D. Francis, G. R. Nudd, T. J. Atherton, D. J.
Kerbyson, R. A. Packwood and J. Vaudin,
"Performance evaluation of the hierarchical Hough
transform on an associative M-SIMD architecture,"
Proc. 10th ICPR, lEEE Computer Society Press,
vol. 11, pp. 509-5 l I.

[33] J.J. Little, G. Blelloch and T. A. Cass, "Algorithmic
techniques for computer vision on a fine-grained
parallel machine," IEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-I I , n. 3, pp. 244-256,
1989.

[34]S. Ranka and S. Sahni, "Computing Hough
transforms on hypercube multicomputers," Journal
ofSupercomputing, vol. 4, n. 2, pp. 169-190, 1990.

[35]Y. Pan and H.Y.H. Chuang, "Parallel Hough
transform algorithms on SIMD hypercube arrays,"
Proc. Int. Conf Parallel Process., vol 111, pp. 83-
86, 1990.

[36]Richard S. Wallace, Michael D. Howard, "HBA
Vision Architecture: Built and Benchmarked",
IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 11, no. 3, pp. 227-232, March
1985.

[37]T. J. Olson, L. Bukys and C. M. Brown, "Low level
image analysis on an MIMD architecture", Proc.
Ist IEEE ICCV, London, 1987, pp. 468-475.

[38]A.N. Choudary and R . Ponnusamy,
"Implementation and evaluation of Hough
transform algorithms on a shared memory
multiprocessor," J. Parallel Distrib. Comput., vol.
12, pp. 178-188, 1991.

E39lF.O. Ozbek and M.D. Wagh, "A parallel Hough
transform for nonuniform images," Pattern Recogn.
Letters, vol. 15, pp. 253-259, 1994.

[40]H. Y. Chuang and C.C. Li, "A systolic array for
straight line detection by modified Hough
transform," IEEE Workshop. on CAPAIDM, New
York, Nov. 1985, pp. 300-304.

[41]H.F. Li, D. Pao and R. Jayakumar, "Improvements
and systolic implementation of the Hough
transformation for straight line detection," Pattern
Recogn., vol. 22, n. 6, pp. 697-706, 1989.

[42]H.T. Kung and J.A. Webb, "Global Operations on a
Systolic Array Machine," Proc. IEEE Int. Conf:
Computer Design: VLSI Comput. Process, pp. 165-
171, 1985.

[43]L. da Fontoura Costa and M. Sandler, "A binary
Hough transform and its efficient implementation in
a systolic array architecture," Pattern Recognition
Letters, vol. 10, pp. 329-334, 1989.

[44]J. L. C. Sanz, "Two real-time architectures for
image processing and computer vision," in Real
Time object Measurement and Classification, A. K.
Jain, Ed., Springer-Verlag, 1988, pp. 1-23.

[45]K. Hanahara, T. Maruyama and T. Uchiyama,
"Real-time processor for the Hough transform,"
IEEE Trans. on Pattern Anal. Machine Intell., vol.
PAMI-10, no. 1, pp. 121-125, 1988.

[46]A.B. Martinez and V. Llario, "Real time holes
location. A step forward in bin picking tasks," in
Sensor devices and Systems for Robotics, NATO
AS1 Series, vol. Fq", pp. 167- 185, 1989.

[47] S.B. Shukla, V. Ramakrishnan and D.P. Agrawai,
"A pipelined architecture for on-line low-level
vision," in EURoMICO 90' Work. on Real Time,
Horsholm, Denmark, pp. 198-204, 1990.

[48] R. Cucchiara, G. Neri and M. Piccardi, "A real-time
architecture for the Hough transform," Tech. Rep.
INGl039, 1st. Ingegneria, University of Ferrara,
Italy, July 1996.

[49]L64250 Histogram/Hough Transform Processor
(HHP), Digital Signal Processing Databook, LSI
Logic Corporation, November 1990.

[50]M. Rhodes et al., "Monolithic Hough transform
processor based on Restructurable VLSI," IEEE
Trans. Pattern Anal. Machine Intell., vol. PAMI-
10, no. I, pp. 106-1 10, 1988.

[51]T. Ogura, M. Nakanishi, T. Baba, Y. Nakabayashi,
R. Kasai, "A 336-Kbit content addressable memory
for highly parallel image processing," Proc.
CICC'96, 1996.

[52]M. Nakanishi and T. Ogura, "A real-time CAM-
based Hough transform algorithm and its
performance evaluation," in Proc. I3nth ICPR,
IEEE Press, vol. B, pp. 5 16-52 1, 1996.

[53]M. Meribout, T. Ogura and M. Nakanishi, "Real-
time circle extraction using CAM-based Hough
transform", Proc. MVA'96, 1996.

[54]D. Ben-Tzvi and M. Sandler, "Counter-based
Hough transform", private communication,
submitted to Electronic Letters.

[55]D. Ben-Tzvi and M . Sandler, "Analouge
implementation of the Hough transform," /EE
Proceedings-G, vol. 138, n. 4, pp. 457-462, 1991.

[56]C.M. Brown and D.B. Sher, "Hough transformation
into cache accumulators: considerations and
simulations," CSD, University of Rochester, TR
1 14, 1982.

[57] D. Sher and A. Tevanian, "The vote tallying chip: a
custom integrated circuit," CSD, University of
Rochester, TR 144, 1984.

[58]C.M. Brown, "Peak finding with Iimited
hierarchical memory," Proc. 7th ICPR, Montreal,
Canada, July 1984, pp. 246-249.

[59]M. Albanesi and M. Ferretti, "Shape detection with
limited memory," Pattern Recognition, vol. 24, n.
12, pp. 1153-1166, 1991.

[60]M. Albanesi, and M. Ferretti, "Systolic merging
and ranking of votes for the Generalized Hough
Transform," IJPRAI, vol. 9, n. 2, pp. 315-341,
1995.

[61]M. Albanesi, A. Antola, M. Ferretti and R. Negrini:
"A Chip Set for the Generalized Hough
Transform," Journal of VLSI Signal Processing,
vol. 12, pp. 1 15-134, 1996.

[62]M. Ferretti, "The generalized Hough Transform on
Mesh Connected Computers", Journal of Parallel
and Distributed Comput. , vol. 19, pp.5 1-57, 1993.

[63]M. Albanesi, M. Ferretti, and D. Todorova, "Object
Recognition on the CM2," in Progress in Image
Analysis and Processing, S. lmpedovo Ed., World
Scientific (Singapore), pp. 7 13-720, 1994.

[64]Z.N. Li, B. Yao and F. Tong, "Linear generalized
Hough transform and its parallelization," Image
Vision Comput., vol. 11, n. 1, pp. 11-24, 1993.

[65]S. Jeng and W. Tsai, "Fast generalized Hough
transform," Pattern Recogn. Letters, vol. 1 1, pp.
725-733, 1990.

