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Abstract: This paper concerns acquisition of dense
depth maps in the context of image segmentation, which
is fundamental in various vision applications. Focusing
on stereoscopic vision as the methodology, our goal here
15 to develop a scheme which is computationally simple
but still allows a dense disparity map. For the estima-
tion of stereo disparity, for this reason, we employ an
approach based on local Fourier phase obtained by com-
plex bandpass filters. We consider the characteristics of
this search-free and thus fast approach as suitable to
compute stereo disparity as a basic cue for image seq-
mentation. Within the framework of the phase-based al-
gorithm, in this paper, two issues are discussed. One 1s
the use of the derwvative-based filters, and the other is
the certainty-weighted disparity propagation.
Keywords: disparity, depth segmentation, phase-based
algorithm. complez filters, disparity propagation

1 Introduction

While different image features such as motion, color,
or edge information provide cues, stereoscopic disparity
also provides a strong cue for image segmentation as it
carries depth information. A highly desirable property
for depth segmentation is the availability of disparity
estimations tightly connected to the spatial locations.
In this article, we propose a technique to realize dense
disparity maps while keeping computational simplicity
employing the phase-based approach. The basic con-
cept of the phase-based approach is to convolve the left
and right stereo images with a complex filter, and then
estimate the local disparity by computing the complex
phase difference of the filter output. Since the stereopsis

“This report describes research done while the author
was with the Computational Vision and Active Per-
ception Laboratory (CVAP) at the Royal Institute of
Technology (KTH). Sweden.
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Figure 1: The framework of the disparity estimation
algorithm including the hierarchical structure. The in-
formation flow in layer k is shown. The procedure in the
dashed box corresponds to equation (2) and (5). Down
at the original scale (k = 1), the disparity and the cer-
tainty maps are taken as the outputs of the algorithm.



algorithm using output phase of Gabor filters was intro-
duced as a disparity estimator [9. 11, 4], several works
based on the technique have reported on its efficiency
both by extensive analysis and applications [5, 10, 2, 8].
While the advantages of the phase-based method in-
clude computational simplicity, stability against vary-
ing lighting condition and especially direct localization
of the disparity estimation. remaining issues concern
the complex filters which need be carefully designed,
and for image segmentaion the whole scheme must be
constructed in such a way that disparity estimates are
derived even in parts of input iimage where the intensity
variance is limited.

In the following. we first introduce our framework
of phase-based algorithm in Section 2. Motivating the
advantages of the derivative-based filters in Section 3,
we derive a dense disparity map by way of certainty-
weighted disparity propagation in Section 4. The per-
formance of the proposed scheme is exemplified in Sec-
tion 5. Finally we summarize the work in Section 6.

2 Disparity from phase

Here we briefly introduce the principle of phase-
based disparity estimation and describe the structure
of our framework. In the following, Vi(x.y) and Vi.(x, y)
are the convolutions at a coordinate (. y). obtained by
a complex filter applied to the left and right images re-
spectively. These complex functions are approximately
related to each other by a phase shift. which arises from
the spatial shift (i.e. disparity):

~

(1)

D(r.y) denotes disparity at (r,y) in the image and
W(r.y) represents some measure of local frequency of
the image intensity function in the neighborhood of
(r.y). As w(r.y) we employ the so-called instantaneous
frequency which is introduced in [5]. It is defined locally
by the derivative of the phase function and therefore di-
rectly related to the local structure of the image inten-
sity function. The relation in equation (1) then leads to
a disparity estimate through computation of the com-
plex phase difference:

. arg Vi(e,y) —arg Vi.(r.y) )
B w(r.y) T

The algorithm which yields the disparity and the
certainty map (see Section 4) in our framework is
constructed in multi-resolution hierarchy. Figure 1
schematically depicts the framework by outlining the
procecdure at one scale.

Vilr.y) exp [jw(r.y)D(x.y)] - Vila.y).

D(x.y)

3 Derivative-based filters

Complex filters as disparity estimators are required
to satisfy several existing constraints and different fil-
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ters have been proposed accordingly [10]. Among dif-
ferent filter types, Gabor filters are a common choice as
they minimize the product of spatial width and band-
width [3]. They are defined by:

T . plwos (3)
where o and wy indicate the spatial half-width and the
central frequency of the filter. In the literature [2, 10]
Gabor filters with bandwidth close to 1 octave is a usual
choice. We call them NB-Gabor filters. In our previous
work [6] though, based on uncertainty analysis, we have
pointed out the effectiveness of filters with larger band-
width (owy ~ 1.3; about 3 octave) in terms of both
disparity localization and estimation accuracy. We call
them WB-Gabor filters'.

In order to apply the framework in a working system,
the filters are required to be computationally simple.
We here employ discrete approximations to the first and
second derivatives which are first introduced by West-
elius [10]; ¢-(=1,0,1) and (1,0, —2.0.1)*. Our goal here
is to motivate the availability of the derivative-based
filters as substitutes for WB-Gabor filters. The advan-
tages of the derivative-based filters lie in their small
spatial support and the normalization of the features.
Smaller spatial support not only reduces the computa-
tional cost but at the same time allows better disparity
localization. Furthermore, it is also convenient to have
no DC-component, which is more or less inevitably in-
volved in case of Gabor filters.

In the frequency domain. as known in Fourier the-
ory, to take the first and the second derivative of the
image intensity function i(x) is equivalent to multiply
the Fourier transform I(w) by jw and (jw)?. Since they
are not bandpass operators, as far as the continuous
theory is concerned, preliminary smoothing of i(x) is
necessary so that the derivative operators become band
limited. In the case of discrete operators, however, the
smoothing is not a prerequisite as the discrete approach
includes some smoothing implicitly. The Fourier trans-
form of the derivative-based filters has the form:

g(a50.w0)

D(w)=2 (14t sinw—cos2u). (4)
It contains some contributions in the negative frequency
domain though they can be suppressed by adjusting ¢
to some extent?. It also covers a rather wide bandwidth
around the central frequency wq = /2 as a natural fea-
ture derived from the small spatial support, i.e. 5 pixels.
This number can be crudely associated with the spatial

"WB and NB are derived from wide-bandpass and
narrow-bandpass.

?Integer values of the weighting factor f make it possible
to implement the filter on a pipeline processor.

3The weighting factor # ~ 1.732 is reported to minimize
the negative frequency in a detailed investigation [10].



half-width o (see equation (3)) as 2 - 3¢ =~ 5 pixels,
which leads to owy ~ 1.3. This indicates, in the con-
text of the Gabor representation, that the bandwidth
of the derivative-based filter is similar to that of the
WB-Gabor filter, implying possible similarity in per-
formance.

4 Disparity propagation

As is the case for any disparity estimators, the phase-
based approach may also work improperly in parts
of images where too little texture exists or stereo-
correspondence is difficult. Hence, it is indispensable for
an estimated disparity map to entail a certainty mea-
sure for evaluation of its reliability, There are several
definitions of such certainty measures, simple or elabo-
rate [10]. The magnitude of the filter outputs [Vi| and
|V5| are rather commonly used properties. It is based on
the fact that the odd and even filters practically func-
tion as vertically oriented edge and line detectors, and
above all, those properties are available directly from
the filtering process. Our certainty measure is defined
by combining that informartion:

\/ [Vi| [V

I+

r.y) = |Vi| Vi (5)

High certainty is reflected in the first factor of the defini-
tion which is large for strong filter outputs both in the
left and the right images. The second factor captures
the similarity between them. and lies in the range [0,1].
C'(2.y) will be kept low around the area where the dis-
parity estimation is unstable due to bad-correspondence
or lack of image intensity variance, thus helping to avoid
singularities,

Based on C'(x.y
disparity D.(r,y) with a Gaussian envelope G(z, y; 7,.)
(o the standard deviation):

) we compute a certainty-weighted

D.(r,y) =

ZG{:

ZG(' =T, U "qau}C(

oy —yio,)C(2' .y )D(x', y)

bt - (6)
r.y’)

The certainty values are used as a weighting factor for
the disparity estimates in a Gaussian region G(a' —
r.y' —y: 0, ) around each coordinate (., y). Hence, dis-
parities with higher certainty are propagated to the
vicinity while those with lower certainty are suppressed.
In a coarse-to-fine strategy. repeated use of this tech-
nique is especially useful, since erroneous estimates are
attenuated at the early stage instead of causing recur-
sive errors.
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5 Experiments

The introduced scheme has been implemented on a
Ultra-I 170/E. An example is shown in Figure 2 with
three persons in a laboratory scene. The resulting dis-
parity and certainty maps are obtained in a 4-layered
coarse-to-fine framework using the derivative-based fil-
ters. It is seen that relative depth is recovered appro-
priately to serve as a cue for image segmentation. Fig-
ure 3 shows results of the same experiments but using
NB-Gabor filters instead. It is observed that the lo-
calization is not as precise as in the case of using the
derivative-based filters?. Especially in both ends of the
image the derivative-based filters allows better localiza-
tion because of the small spatial support.

b=

(b) Disparity

(c) Certainty

Figure 2: Example of disparity and certainty maps I.
The results are by the derivative-based filters with
certainty-weighted disparity propagation. In (b) the
higher the gray scale is, the larger the estimated dis-
parity is (further away in the scene). In (¢) higher gray
scale represents higher certainty measure.

Examples of computational time are shown in Ta-
ble 1. Listed are the time required for the computa-
tion by the derivative-based filters as well as by Ga-
bor filters with and without the certainty-weighted dis-
parity propagation. i.e. o, = 0. 2.0. The simplicity of
the derivative-based filters is reflected in the computa-
tional cost. Thongh extra computation is needed when

'Our earlier work [8] includes a comparison between
the derivative-based filters and Gabor filters. However. it
is without disparity propagation,



(b) Certainty

(a) Disparity

Figure 3: Example of disparity and certainty maps II.
The results are by NB-Gabor filters (o = 3.7, oy = 1.0)
with certainty-weighted disparity propagation.

the propagation process is included. it does not increase
the cost substantially considering the effect it brings in
the result.

Table 1: Computational Time on Ultra-1 170/E (CPU
Time [sec]) unsing 4-layered hierarchical scheme on
256x 256 1mages.

The standard deviation o, =0 g, =20
Derivative-based filters 1.95 2.14
NB-Gabor filters 2.83

In Figure 4 another example with a repetitive pat-
tern is shown. The input image is with slanted back-
ground and a paper rectangle in front. The dispar-
ity and certainty maps are obtained analogously using
the derivarive-based filters. It is seen in the disparity
map that the scheme discriminates the paper from the
background. Such a pair of dense disparity map and a
certainty measure provides significant information for
depth image segmentation. It should also be noted that
the presented algorithm is equally suited to detect hor-
izontal image velocity, by replacing the input stereo im-
ages with a pair of rime consecutive images, Together
with the disparity map. the computed motion field has
been implemented to applications such as an attentional
mechanism. For practical examples. see [7. 1].

6 Summary

In this article. we have considered the problem
of disparity estimation using a phase-based approach
to depth segmentation. We have (i) motivated the
to Gabor filters,
and (ii) applied them in conjunction with a certainty-

derivative-based filters in contrast

weighted disparity propagation with Gaussian envelope.
In our framework of phase-hased algorithm. throughout
the coarse-to-fine scheme, the use of Ganssian envelope
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Figure 4: Example of disparity and certainty maps III.
In (a) a paper is hanging in front of a slanted back-
ground. The results are by the derivative-based filters
with certainty-weighted disparity propagation.

as an integral operator compensates the instability aris-
ing from the derivative operators. As the result, the pro-
posed techniques improve the scheme in terms of (iii)
the computational cost and (iv) the accuracy of the es-
timation localization. The efficiency has been confirmed
through the experiments.
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