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Abstract 

This paper proposes a real-time 3D feature ex- 
traction hardware algorithm with feature point 
matching capability between neighboring frames, 
which realizes 3D tracking of moving objects. This 
hardware algorithm is based on a 3D voting method. 
Both the 3D voting and tlie featiire point matching 
arc directly carried out through highly parallel pro- 
cessing by content addressable memory (CAM) i11 
real time. For the 3D voting, the CAM acts as a 
PE (Processing Element) array that performs highly 
parallel processing. For tlie feature point matching, 
the CAM executes a highly parallel processing of 
nearest neighbor search. Sinliilations of CAM hard- 
ware size, processing time and accuracy show that 
real-time 3D feature extraction and feature point 
matching can be achieved using a single CAM chip 
with current VLSI technology. This CAM-bwed al- 
gorithm promises to be an important step towards 
the realization of a real-time and compact 3D tmck- 
ing system for moving objects. 

1 Introduction 

Tlie 3D tracking of inoving objects requires both 
3D fcatnre extraction and feature point matching 
between neighboring frames. For 3D featiire extrac- 
tion from miiltiple view points, several algorithms 
using 3D voting have been proposed [I]-[4]. These 
3D voting based algorithms have several advantages, 
the most important one being their robustness to 
noise. However, these algorithms can not achieve 
featiire point matching, which is essential for mov- 
ing object tracking. Feature point matching be- 
tween neighboring frames can basically be realized 
by nearest neighbor search. However, nearest neigh- 
bor search is time consuming and costly. 
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In order to attain a real-time and compact 3D 
tracking system for inoving objects, we propose a 3D 
voting based feature extraction hardware algorithm, 
that can also realize featiire point matching between 
neighboring frames in real time. Both the 3D voting 
and the feature point matching are directly executed 
by content addressable nleinory (CAM) in parallel. 
For the 3D voting, tlie CAM acts as a PE (Pro- 
cessing Element) array that performs highly paral- 
lel processing. For tlie featiire point matching, the 
CAM execi~tes a highly parallel processiiig of nearest 
neighbor search. 

The perforniance of the CAM-based algorit,lim, 
i.e., tlie CAM hardware size, tlie processing time a i d  
the acciiracy of 3D tracking for inovi~ig objects, was 
evaluated by sin~iilation. The results show that real- 
time 3D feature extraction and feature point match- 
ing can be achieved using a single CAM chip with 
current VLSI technology. 

Section 2 describes the 3D feature extraction 
hardware algorithm with feature point matching ca- 
pability. Section 3 disciisses CAM hardware size and 
processing time and shows the simiilation results for 
3D tracking for moving objects. 

2 3D Feature Extraction with Fea- 
ture Point Matching Capability 

2.1 CAM-based 3D Feature Extraction 

Tlie CAM-baed 3D feature extraction algorithm 
is schematically shown in Fig. 1. This algorithm is 
based on a 3D voting method. In the figure, R is 
the number of cameras, V is the maxi~niim number 
of feature points in an image, and N is the side size 
of 3D voxel space. The 3D voxel space is sliced as 
shown in the figure. On every sliced plane, two kinds 
of processing are executed. One is the voting, which 
is done to count the number of back-projection lines 
which have the same coordinates in the sliced plane. 
After the voting, a maximum value upclating pro- 
cess for every basic back-projection line is executed. 
These two processes are executed by the CAM and 



2.2 Feature Point Matching between 
3D voxel space (N~) Neighboring Frames 

(R) images 
Fig. 1. 3D voting algorithm. 
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Fig. 2. Menlory configuration. 

arc it,erated for all sliced planes. Each featwe point 
on tlie basic image exists at the coordinate where 
tlie voting reslllt is niaxim~~m. 

In this hardware algorithm, the CAM acts as a 
PE array that calcnlates the coordinates of every 
back-projection line in each sliced plane. Figure 2 
shows the memory (CAM and RAM) configuration. 
Every image has a CAM of V words, and the basic 
iniage has a RAM of V words. In tlie CAM, passing 
information on the back-projection lines is stored. 
A CAM word corresponds to one back-projection 
line, and keeps passing coordinates (Xk, Yk) on the 
cllrrent sliced plane ( Z = k )  and line vectors for X, 
Y coordinates (AX,  AY). Using these valnes, the 
passing coordinates (Xlc+l, Yk+l) on tlie next sliced 
plane are calcnlatcd as 

Tlieso calc~ilations arc execntcd in parallel for all 
back-projection lines by tlie CAM. Tlie perforniance 
of t,liis hardware algorithm has already been evalu- 
a t ~ l  and reported [4]. 3D coordinatcs of ninny fea- 
tnre ~)oints (up to abont 1,000 points) can be ob- 
tained in real time. 

Higlily parallel feat,~ire point iiiatcliing hetwccn 
neigh1)oring frames is also achieved 1)y lising CAM. 
Tlie ~natcliing process is execl~t~etl at the initializing 
of CAM for tlie hasic image, as sllown in Fig. 3. 
After tlie 3D featnre cxt,raction process for tlic prc- 
violis frame, all back-projection line coortlinat,cs on 
tlie last slicetl plane are stored in tlie CAM. Using 
these last coordinates ancl tlie initial coortlinatcs of 
tlic next frame on tlie s an~c  plane, the nearest ncigli- 
1)or can be fonnd tl~ro~igli a highly ~)arallcl soarch 
carrietl out by CAM fiinction. Tlie ol)t,aiiied nc:arest 
neig11l)or is considered as tlie same feature point,. A 
schematic diagrani of tlie niat,cliing and t,lie extrac- 
tion is shown in Fig. 4. I11 order to exccut,~ tlic 
matching efficiently at tlie last slicetl planc, process- 
ing direction for tlie extraction is reversed for oach 
frame. 

2D feature point dab 
by each frame 

Max value updating 

Back-projection line data 
3D coordinates data 
of extracted feature point 
by each frame 

Fig. 3. CAM-based processing flow. 

for an even frame for an odd frame 

Fig. 4. Feature point matcliing. 

For matching by nearest neiglibor search, the dis- 
tance between the target fcatnre point of ;i new 
frame and every featnre point of the previol~s frame 
n111st be calcnlated. Therefore, tlie distance field is 



addcd to t,he CAM, whicli perforlns a highly par- 3 Performance Evaluation 
allcl calcnlation of tho distance. In this sti~dy, we 
iisod tlic Manliattan distance Di, as cxpresscd by 3.1 CAM Hardware Size 
the eqnation 

The main hardware for this liardware algoritlin~ 
= l X N E w  - + lYNEw - Yil. is tlie CAM. T l ~ e  nulnl)er of CAM words dcpcntls 

where (XNEW, YNEW) are the featnrc point coor- 
dinates of the new frame and (Xi, Yi) are the old 
coordinates stored in tlic CAM. 

The calculation of Di and the ~natching process 
arc necessary only for the basic image. For other 
refcre~ice images, all initial data of back-projection 
lines are written into the CAM sequentially. Figure 5 
sliows the details of the processing flow for niatching 
in the basic image. 

Stepl: For each initial coordinates of new frame 
( X N ~ ~ ,  YNEW), calci~late Manliattan distance 
D; to every coordinate of the prcvions frame 
on the CAM (X,, Y,). All D;'s can bc obtainctl 
si~ni~ltaneoiisly by ~ising highly-parallel CAM 
function. 

Step2: Execntc a pamllel search for tlic word with 
the minirn~~~ri  D, value. 

Step3: Store the initial coordinates of tllc new 
frame (XNEW. YNEW) and ( A X ,  A Y )  at foiind 
wortl. The nearest neig1il)or points of prcvio~w 
and new frames have tlie same index. 

New position data , 

Fig. 5. Processing flow for matching. 

Tlie above liardware algorithm can be execnted in 
parallel by CAM fi~nction. In Stepl, it is necessary 
to calcnlate eq. (1) for d l  words in the CAM. I11 
Step2, minimum search is also carried out for all 
words. Both Stepl and Step2 are executed without 
dependence on the number of CAM words. 

on V and R. Tlic word lcngtli tlcpcntls on N .  Tlie 
CAM Iiartlwaro size for this Iiartlwaro algorith~n is 
G8[bit] x (V x R)[words], wlicre N is 2%. 

On the other hand, a CAM chip with the capacity 
of 84 [bit] x 4[Kword] has already bee11 developed [5 ] .  
This is enol~gli capacity for this hardware algoritlim. 
All back-projection line data for all i~nages can be 
stored in a tlie single CAM chip. Tliis means that 
the hardware algorithni can he realizod on a single 
board. 

3.2 Processing Time 

Tlie cst,imatcd procmsing times for fcatiirc cx- 
traction and niatcliing are sliown in Ta1)le I. For the 
cstinlation, it was assii~ncd t,liat all data are storctl 
in a single CAM chip, the nuulbcr of canlcraq R . 4 ,  
3D voxel space size N=256, ant1 tho clock speed is 
25 MHz. 

Cornpasetl wit,li seqnential processing, t l ~ c  ~natcli- 
ing tinlc dccrcascs fro111 O(V2+VR) to O(VR), and 
tlic cxtract,ion tinic is retlaccd fro111 O(RV2 N )  to 
O(RVN);  that is, an improvement in processing 
speed of at least V times is achieved. As sliown 
in the table, it is possible to execute extractio~i and 
~natching in real time np to d ~ o n t  200 points. 

Table I Estimated processing tinies rising a single 
CAM chip. 

TOTAL 11 9.6 1 16.6 j 30.5 1 [ms / frame] ] 
(R=6, Nt256) 

Number of points V 

Extraction time . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 
Matching time 

3.3 Feature Extraction and Tracking 
Performance 

Featnre extraction anti tracking performaticc for 
moving objects was preliminarily cval~iatecl by sini- 
nlation. 111 the simnlation, target objects were many 
moving points in tlie 3D space. Each point had ini- 
tial coordinates (xo, yo, zo) ant1 vector (Ax,  A?], Az)  
for moving, which were created at random. Tlle 3D 
space was limited and these points were reflected a t  
the boundary. For every franie, 3D featiire extrac- 
tion and feature point matching wns execnted. After 
10-frame processing, we obtained the probability of 

50 [ 100 [ 200 
8.8 j 15.0 j 27.3 . . . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
0.8 ! 1.6 i 3.2 

[ms 1 frame1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

[ms/ frame1 



siiccess in extracting featiire points and matching 
1)etween continiious frames. 

Tlle dependence of tlie probability P on the num- 
ber of featiire points is sliown in Fig. 6. In the fig- 
lire, S is t l ~ e  max(lAxl+lAyl+lAzl) of moving fea- 
tiire points. In tliis ewe, R=G, N=256, V=10 to 
200. The probability P is inore than 85% wlieii tlie 
niiniber of featiire points is 100 and S is 5. This is 
good clioiigh for practical applications. 

Figiirc 7 shows an example of the extraction and 
tracking of irioving points for 20 frames, where V=10 
and S=7. In tliis case, tlie probability P is aboiit 
98%. Witliin tho 20 frames, tliere appear two fea- 
tiire points tliat correspond to wrong indexes, in two 
frames, as sliowii in Fig. 7 (3),(4). Tliesc errors were 
~aiised by featilre point crossing. 

I I I I )  
0 50 100 150 200 

Number of Feature Points (V) 

Fig. 6 .  Extraction and matcliing performance; 
Tlie probability is the average of 5 times. 
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4 Conclusion 

We proposed a real-time 3D feature extractioii 
hardware algorithm witli feature point inatcliing ca- 
pability between neigliboring frames, which realizes 
3D tracking of moving objects. In tliis algorithm, 
liiglily parallel processing can be carried oiit in both 
the 3D voting and the featiire point niatcliing by 
effectively iisiiig the liiglily parallel processing filnc- 
tion of CAM. Simiilation resillts of matcliing per- 
formance indicate tliat, witli tlie proposetl liardwarc 
algorithm, the probability of siiccess i11 extracting 
and lnatching is enongli for soiiie practical ap~)lica- 
tions such as hiiman motion capt,iiriiig. I3n3ed on 
the estimation of liardwaro size and the reqnirctl 
processing time, it was sliowii tliat roal-time 3D fea- 
ture extraction arid featiire point matcliing can 1)e 
achieved lisiiig a single CAM chip wit11 cnrrrnt VLSI 
technology. 

I11 fiiti~re work, wc will evalnde t,lie perforinancc 
of tliis algorithrii iising real images. and dovclol~ a 
single board systerri for the 3D tracking of moving 
objects. 
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Fig. 7. Example of ext,ractjion and tracking. 




