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Automatic Recognition of Regular Figures by Geometric AIC 
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Abst rac t  data 

We implement a graphical user interface that automati- class A 
cally transforms a figure input by a mouse into a regular 
figure which the system infers is the closest to the input. 
The difficulty lies in the fact that the classes into which 
the input is to be classified have inclusion relations among 
themselves. This prohibits us from using a simple distance Figure 1: A class included in another is not chosen. 

criterion. In this paper, we show that this problem can 
be resolved by introducing the geometric information cri- that squares are never chosen. In general, classes that 
terion ( A I C )  and give show implementation examples. are included in other classes are never chosen whatever 

distance measure is used (Fig. 1). 
1. Introduction In pat tern recognition, it is tacitly assumed that, the 

A mouse is one of the most fundamental interfaces ,-lasses into which an input is to be classified are dis- 
for generating figures interactively. One problem with joint. One solution to the problenl of classes with 
it is generation of regular figures. Design of indus- inclusion is artificial separation of the classes. For ex- 
t l id  objects and parts requires many kinds or regular- ample, we may introduce an artificial threshold 6 and 
it.Y such as symmetry, orthogonality, and parallelism- decide that a rectangle is a square if the ratio of the 
However, the input figure need not satisfy the required lengths of adjacent sides are between 1 - and 1 + c, 
regularitmy if the mouse is lnanipulated by a human op- thereby separating the class of squares from the class 
erator. In many drawing tools, users are required to of rectangles. However, the inclusion relation is one 
choose a specific mode of regularity (e-g., mode for of the most important bases of geometric reasoning; 
rectangles) from a menu beforehand or enforce a spe- its artificial disruption might cause difficulties in au- 
cific regularity by inputting a command afterward. 1s tomated reasoning. Moreover, how can we determine 
it not possible to automate this process? For exam- the threshold value €? There exists no guiding princi- 
ple, if a User inputs an a p p r o ~ h a t e  rectangle Or an ple for its determination. 

square, is it possible for the In this paper, we present a framework that allows 
puter to automatically infers the intended shape and us to make judgement without destroying inclusion 
correct the input figure into the inferred shape? relations by introducing a criterion that favors a class 

This simple at first sight. For example, we included in another; judgment can be done by con- 
introduce some distance measure that describes dis- sidering the balance of this criterion and the distance 

between figures, say the the measure. A key idea is to use statistical inference. 
squared distances between the corresponding vertices. 
We prepare candidate classes of regular figures such as In statistics, a well known criterion for selecting a 

the class of rectangles and the class of squares. Given reasonable model is what is called the A I C  ( A k a i k e  in- 
format ion  cr i t e r ion)  [I]. However, inferences in statis- an input figure, we choose from each class the closest 

figure to the input in the distance measure we defined. tics are usually formulated as est imat ing the  parame- 

Finally, we choose the one that has the smallest dis- ters  of the  distribution f rom which the  data are drawn.  

tance among them. It  follows that it is difficult to apply the AIC to the 

This paradigm has a fatal flaw. This is due to the problem we are now concerned. However, we can gen- 
eralize the principle that underlies the AIC to geo- fact that classes of regular figures have inclusion re- 
metric inference. The resulting criterion is called the la t ions .  For example, the class of squares is a subset 

of the class of rectangles. It  follows that the distance geometr ic  AIC [2, 31. 

from any figure to the closest square is always no more The guiding principle ofthe geometric AIC is chaos- 
than the distance to t,he closest rectangle. This means ing a model with high predicting capability. For exam- 

ple, let s be the closest square to an input figure Q. 
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Figure 2: Class inclusion relations for quadrilaterals. 

R is the closest rectangle to the input figure Q. Let 
R be a rectangle slightly different from the rectangle 
R, and let Q' be a quadrilateral slightly different from 
the rect,angle R. Then, R has predicting capability if 
it is also a good approximation to Q'. 

If the distance of Q to the square s and the dis- 
tance of Q to the rectangle R is the same, the square 
s has higher predicting capability than the rectangle 
R, because a rectangle has a larger degree of freedom 
than a square and hence the set R of rectangles that 
has a fixed distance to Q has a manifold of a higher 
dimensionality than the set S of squares that has the 
same distance to Q. It follows that perturbations from 
S constitute a smaller set than perturbations from R,  
thereby making s a better approximation. 

In the following, we formalize this intuitive argu- 
ment in precise terms and present a scheme for classi- 
fying regular figures without introducing any thresh- 
old. Finally, we demonstrate the performance of the 
CAD system we have implemented on a workstation. 

2. Classification of Quadrilaterals 
Consider trapezoids, parallelograms, diamonds 

(rhombuses), rectangles, and squares as typical exam- 
ples of regular figures (Fig. 2), although our analysis 
and procedure can apply to any other regular figures 
as well. We represent a point (x, y) in two dimen- 
sions by a three-dimensional vector x = (x, y, l)T (T 
denotes transpose) and call a point with coordinates 
(x, y) simply "point x". Consider a quadrilateral de- 
fined by connect,ing four points x l ,  2 2 ,  23, and 2 4  in 
that order. The necessary and sufficient condition for 
it to be a regular figure listed in Fig. 2 is as follows. 
Here, I , . , I denotes scalar triple product, and ( - , ) 
denotes inner product; we define k = (0,0, I ) ~ .  

Trapezoid. At least two sides are parallel: 

Parallelogram. The two pairs of sides are parallel: 

Rectangle. The two pairs of sides are parallel, and 
adjacent sides are orthogonal: 

Diamonds (Rhombuses). The two pairs of sides are 
parallel, and the the two diagonals are orthogonal: 

Squares The two pairs of sides are parallel, adjacent 
sides are orthogonal, and the the two diagonals are 
orthogonal: 

3. Optimal Correction 
Consider the problem of correcting arbitrarily given 

N points x i ,  ..., X N  into positions that satisfy given 
constraint. Suppose the constraint is given by L equa- 
tions in the following form: 

Infinitely many ways exist to satisfy this constraint. 
Here, we correct the points by "minimal distances". 
As a measure of distance, we adopt the sum of squared 
distances over which the points are to be displaced. 
Let X l ,  ..., X N  be the corrected positions, and define 

This quantity can be obtained by changing the sign 
of the logarithm of the likelihood (up to an additive 
constant) if the error of each point is subject to an 
independent Gaussian distribution with mean 0 and a 
constant variance. It follows that minimization of J 
can be interpreted to be maximum likelihood estima- 
tion in statistical terms. 

Let Ax l ,  ..., AxN be the correction terms, and 
write 

X, = X, - AX,. (3) 

Substituting this into eq. (I),  expanding with respect 
to correction terms, assuming that they are small, and 
retaining only first order terms, we obtain 

Here, F ( ~ )  is an abbreviation of F ( ~ )  (x l  , ..., xN) ;  
VX(.) denotes the gradient (b(.)/dxl, ..., d ( . ) / d ~ ~ ) ~  
with respect to x.  Eq. (4) gives a set of L simultane- 
ous linear equations in AxN. We assume that the L 
equations (1) are mutually independent; we call L the 
rank of the constraint (1). 

Introducing Lagrange multiplies, we obtain the so- 
lution that minimizes eq. (2) under the constraint (4) 
as follows: 



X 

Figure 3: Orthogonal projection onto the model. Figure 4: Derivation of geometric AIC. 

The symbol $ denotes direct product; A, W, and c 
are, respectively, an L x 3N matrix, an L x L matrix, 
and an L-dimensional vector defined as follows: 

Since eq. (5) is obtained from eq. (4), which is a linear 
approximation of eq. (I) ,  the solution does not neces- 
sarily satisfy eq. (1) exactly. So, we regard the cor- 
rected values x, t x, - Ax, as data x, and iterate 
the corrections until eq. (1) is sufficiently satisfied1. 

4. Geometric AIC 
Since the third components of vectors X I ,  ..., X N  are 

all 1, they have 2N de rees of freedom in all. Hence, 5 their direct product x, can be identified with a 
point in a 2N-dimensional space X ,  in which eq. (1) 
defines a (2N - L)-dimensional manifold S with coda- 
m e n s i o n  L. We call S the model  of eq. (1). Minimiz- 
ing eq. (2) is equivalent to orthogonally projecting the 
data point onto the model S [2, 31 (Fig.3). 

Let j be the residual of the minimization, i.e., the 
value of eq. (2) obtained by substituting the optimal 
solution for x,. If the data 21, ..., X N  are perturbed 
from the true positions Z1, ..., %N that satisfy eq. (1) 
by independent Gaussian noise of mean 0 and variance 
a2 ,  it can be shown that j /a2 is subject to a X2 distri- 
bution with L degrees in the first order [3]. This can 
be understood intuitively if we note that only the com- 
ponents of the noise along the L-dimensional "normal 
directionsn to the model S contribute to the residual 
j. T ~ U S ,  

We can infer that the corrected positions x l ,  ..., x N  
have high predicting capability if the expectation 

is small, where E*[.] and E[.] denote the expectation 
with respect to the future data {x:) and the current 
data {x,), respectively. We call eq. (10) the expected 
residual.  Its unbiased estimator is given in the first 
order as follows [2, 31: 

We call this the geometric AIC of model S [2, 31. 

Derivation of eq. (11). Let $:=, 2: be the orthog- 
N onal projection of the future data point $,=, x: in 

the 2N-dimensional space X onto the model S (Fig. 4). 
If we abbreviate the right-hand sides of eqs. (2) and 
(9) by L i x  and Lix , ,  respectively, we have 

Since {x:} and {x,) have the same statistical char- 
acteristics, the first term on the right-hand side equals 
E [ ~ J .  Let (2,) be the true positions. Then, the  sec- 
ond term on the right-hand side equals E*[Li,x] + 
E[L&]. Since the model S is (2N - L)-dimensional 

N and since $:=1 5: and $,=, 5, are mutually inde- 
pendent in S ,  quantities Li.x/a2 and L&/u2 are 
subject to independent X2 distributions with 2N - L 
degrees of freedom in the first order. Thus, each has 
expectation 2 N  - L. Hence, we obtain eq. (11). 

Consider another model St with rank L', and let j' 
be the residual for this model. Its geometric AIC is 
given by 

is an unbiased estimator of the variance a2. 
If the noise in the true positions x l ,  ..., 5N are If AIC(S1) < AIC(S), model Sf is expected to have 

higher predicting capability than model S .  The con- different, we would observe different data x;, ..., x k .  
Let us call them the future data. Consider the residual dition for this can be written as follows: 

with respect to the future data .? - j < 2(Lf - ~ ) a ~ .  
N 

(14) 

J* = 11x: - 6,112. (9) In order to apply eq. (14) for model selection, the 
a= 1 variance a2 of the noise must be known. This is intu- 

'These are essentially the Newton iterations, so the conver- 
itively evident. In fact, suppose we want to distinguish 

gence is quadratic in general. Hence, four or five iterations are Squxes A difference has a sig- 
sufficient for practical purposes. nificant meaning if the noise is known to be small, 
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Figure 5: Input figures and inferred shapes: (a) trapezoid; (b) parallelogram; (c) rectangle; (d) diamond; (e) square. 

while such a distinction is meaningless if the noise is 
known to be large. 

In general, we need other sources of information 
(e.g, an empirical distribution of the noise) to esti- 
mate the noise magnitude. If models have inclusion 
relations, however, we can take advantage of that fact 
to extract information about the noise. Suppose the L' 
equations that define the constraint on model S' can 
be obtained by adding some equations to the L equa- 
tions that define the constraint on model S. Then, we 
say model S' is stronger than model S, or model S is 
weaker than model S', and write 

Geometrically, this means that S' is a submanifold of 
S in X. Suppose the weaker model S holds. Then, the 
variance u2 of the noise can be estimated by eq. (8) 
whether or not the stronger model St is satisfied. Sub- 
stituting the estimate into eq. (14), we obtain the fol- 
lowing criterion: 

5. Classification Procedure 
Let jtrap be the residual for optimally correcting 

four input points 2 1 ,  2 2 ,  23 ,  2 4  into vertices of a 
trapezoid. Similarly, let jpara, jrect, jdiam, and jssua 
be the residuals for correcting the input into a parallel- 
ogram, a rectangle, a diamond, and a square, respec- 
tively. The procedure for discrimination is as follows: 

1. (a) If jpara 5 3jtrap, judge the input figure to be 
a parallelogram and go to Step 2. 
(b) Output an optimally corrected trapezoid, and 
stop. 

2. (a) If jrectangle 5 2jparar judge the input figure to 
be a rectangle and go to Step 3. 
(b) If jdiam 5 2jpara, judge the input figure to be 
a diamond and go to Step 4. 
(c) Output an optimally corrected parallelogram, 
and stop. 

3. (a) If jsqua 5 (5/3)jreCt, judge the input figure 
to be a square, output an optimally corrected 
square, and stop. 
(b) Output an optimally corrected rectangle, and 
stop. 

4. (a) If jSqua 5 (5/3)jdiam, judge the input fig- 
ure to be a square, output an optimally corrected 

square, and stop. 
(b) Output an optimally corrected diamond, and 
stop. 

Note that this  procedure does n o t  involve a n y  arbitrar- 
ily ad ju tab le  threshold E .  

Figure 5 shows implementation examples: input fig- 
ures are inferred to be (a) a trapezoid, (b) a parallelo- 
gram, (c) a rectangle, (d) a diamond, and (e) a square. 
The input figure is drawn in thin lines; the corrected 
figure is drawn in thick lines. 

6. Concluding Remarks 
In this paper, we have presented a graphic interface 

for inferring regularity in a figure input by a mouse 
without using any adjustable thresholds and automat- 
ically imposing the inferred regularity. We first argued 
that, unlike the usual pattern recognition problem, we 
cannot select the closest class measured by some dis- 
tance criterion if the classes have inclusion relations. 
Then, we showed that this difficulty can be resolved by 
introducing the geometric AIC.  We described the ba- 
sic principle underlying it and demonstrated the sys- 
tem performance. 

Although recognition, extraction, and classification 
of features that have inclusion relations have been 
studied in relation to a variety of applications [5, 61, 
the intrinsic difficulty caused by the inclusion relations 
does not seem to be fully understood yet [4]. The ap- 
proach presented here is expected to play an important 
role in dealing such problems. 
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