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Abstract 

Delineation of irregular shaped objects can be 

realized using active contours, called snakes[l].  

However, the minimization of the potential 

energy pushes the control points toward the 

lowest potential energy regions, so most of the 

control points lie in those regions and a few, or 

even no control points lie in other parts of the 

contours, as shown in the Fig.1. We propose an 

Equidistant Snake that forces its control points to 

be equidistant from each other while minimizing 

its energy. In this way, it can be assured that the 

control points will lie all along the contour at 

equidistant intervals and not only in those 

regions of higher energy, allowing much more 

accurate delineation than using standard snakes. 

We also present a method to create the potential 

field where the minimum points are on the ridge 

lines of the edge image, as well as, a method to 

calculate the weighting factor between the 

internal energy and the image energy. Finally, we 

show the behavior of our equidistant snakes in 

delineating irregular boundaries of some 
synthesized and medical images. 

places where the edge intensity becomes a local 
minimum. So, the control points will be 

relatively sparse in the places where the edge 

intensity is low and they will not be uniformly 

distributed along the ridge line. 

The Figure 1 shows an irregular contour and the 

result after convergence using a standard snakes. 

a) Original image b) Edge Image 

C) Resulting standard snakes 

Figure 1 : Standard snakes detection 

I The Problem with Irregular Contours 

The magnitude of the edge intensity is I1 Equidistant Snakes 
different in each part of the true edge line, 
therefore, if we simply minimize the image 2.1 Energy Formulation 
energy, the control points will concentrate on the 

The equidistant snakes energy functional to be 
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E(U,L)= Eima.ge(U) + h. Eint(L) (1) 

U is the set of all control points vectors ui=[ui,vilt9 

that is, 

where p(u i )  is the potential energy at point ui.  

L is the set of all the links joining the control 

points, so 

where g(wi)  is the gradient. 

L = (11, 12, ..) and I,(ui, uj)=ui - uj, (3)  a) Input image b) Edge image 

for all i and j joined by a link I,. So, we define 

the internal energy as 

1 2 
(4) aEint (L) ' Ta C lllmll C )  G*(edge) & edge. d) Pot. image & edge 

zm€L Figure 2:The Potential image. 

where h. is the regularization parameter[l],[2]. 

The internal energy causes each control point to 

move to the position of the gravity center of its 

connected control points. 

Finally, the potential image, for each point ui is: 

2.3 Movement of Control Points 
2.2 The Potential Image 

Using the ordinary Gaussian convolution to 

calculate the potential image results in the 

minimum points deviating from the true ridge 

lines whenever the curvature is large, Fig.2 c).. 

So, we take the minimum value among the 

potentials created by the surrounding pixels, 
Fig.2 d). We will call this resulting image the 
potential image. 

Here, the gradient image is calculated applying 

the Finite Difference Method (FDM) using the 
central differences of the intensity gray level 
image. 

Applying the Gaussian convolution, we obtain an 
expression for the potential p', at  pixel uj: 

Control points move based on two considerations, 

the minimization of its energy functional and the 

equidistant restriction. 

Then, each point continues to move until the 

direction of its former motion vector becomes 

opposite to that of the actual motion. At this time, 
the point is considered to have gone through its 

optimum, i.e., a ridge line, then it stops its 
motion until all the points have gone through 
'their optimum. 

As a step length, we use a factor a that 
decrements its value in half whenever all the 
points cross the ridge lines, instead the ordinary 
steepest descent factor. Thus, the motion vector 

for each control point, ui ,  could be represented 



by the following vector: 

where. -- - * ~ i )  + I  C(Ui -Uj) (8) 
dl. dl. 

1 u,cui 

and U' = {u j  13 l,(ui,uj)) 

2.4 Equidistant Correction 

Our method of achieving equidistance is based on 

a very simple but important property: All the - - .  

control points are equidistant only when they are 
on the bisector line of its neighboring two 

control points. 

We modify the motion vector, for each control 

point, to ensure that they will be on the bisector 

line. From (7), we calculate the vector A ui, the 
final motion vector, as follows (Figure 3): 

A ~ ~ 6 r . d  I edge potential I 

I I 

Figure 3: Motion correction vector 

equal to g and the bending angle of the contour 

equal 2 8. Let's, also, suppose that the control 

points ui, u, and uk deviate a distance a from the 

edge line. In this situation, the condition that ui 

no longer deviates from the true contour is given 

by: 

I l ~ n t l l '  ~ ~ ~ m a g e ~ ~  (1 1)  

And from (5) and (7) we have 

g sin 0 
11C.t 11 = 2 2  C O S ~  * ~ ~ c m g e ~ ~  =-&- 

g tan 8 
where ?L l 

2do& 

Figure 4: Adjusting of 2 

IV Experiments 

In our experiments, we defined a measure of the 

equidistant error for the links as 

4=4 
&+d , (Y, - - ~ , ) ' ( ~ l ~ ~  --(uI +4Rml)) 

(q-y) (9) Where i is the average of the link lengths, and 

1% -1411 
6, is the standard deviation. 

center - j - U k  
where ui - 

2  

I11 Weighting Factor, 2 

(1 0) 
We found that it was about a 60% for the case of 

standard snakes, compared with a 10% for our 

equidistant snakes. 

We also measured the error in accuracy. Fig.5 
Let's suppose that, in figure 4, the gradient is shows the residual images for the equidistant and 



standard snakes. In the case of equidistant snakes, 
the error was less than half the error of the 

standard snakes (given the error as the summation 

of black areas over the original image area). 

a)  Standard snakes b) Equid. snakes 

Figure 5 :  Error in accuracy 

Fig.6 shows how the accuracy of snakes changes 

when the number of control points changes for 
the equidistant and non equidistant snakes. 

Fig.7 shows the result of using snakes in a natural 
image from a cell of blood. 

Figure 6: Snakes accuracy comparison. 

a)  Original 

d )  Standard snakes e)  Equid. snakes 

1') Std .  snakes (Zoom)  g ) E q u ~ d .  snakes (Zoom) 

Figure 7: Equidistant and standard snakes 

performance in a natural image. 

V Conclusion 

We have introduced an equidistant snake that 
adjusts its control points in order to delineate 
irregular shaped contours more accurately. This 
equidistant snake has proven to be especially 

useful for applications such as segmenting and 
tracking of medical images. We have also 
presented a method to create a potential field, as 
well as, a design method to calculate the 
regularization factor 2 .  
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