
MVA '96 IAPR Workshop on Machine Vision Applications. November. 12-14. 1996. Tokyo. Japan

Efficient Implementation of Image Processing Algorithms on Linear
Processor Arrays using the Data Parallel Language 1DC

Sholin Icyo * Ican Sato t
Illforl~lat~ion Technology Research Laboratory NEC Informatec Systems, Ltd.

NEC Corporation

Abstract

SIMD linear processor arrays (LPAs) have re-
ceived a great deal of interest as a suitable parallel
architecture for image processing. However, few pos-
sess a high level programming environment support,
and tlie range of image processing tasks which can
be efficiently i~nplenlented is unclear. In this paper,
we first describe a data parallel language succinctly
designed for a virtual LPA, and also a compiler for
an existing LPA. Next, we provide a guideline for
pamllel SIMD linear array algorithm developnlent
using the language. The guideline is consisted of
five hasic parallelizing methods, I>y using which effi-
cient implementations are shown for each category of
low to intermediate level image operations. We also
suggest that further improvement of performance on
LPAs can be acliicvcd, I>y architectural supports for
reducing the control overhead of some parallelizing
methods.

1 Introduction

SIMD linear processor arrays (LPAs) have re-
ceived a great deal of interest as a suitable parallel
architecture for image processing [I]-[3]. However,
when focusing on the software environment,, few pos-
sess a liigli level progranlming language support. Al-
though some pamllel image processing algorithms
have hecn proposed thus far[9]-[11], currently there
is a lack of a clear idea to what extent can paral-
lelism be exploited for image tasks by using LPAs.

In this paper, 1DC (One Dimensional C), a suc-
cinctly defined data parallel language which sup-
ports a virtual LPA, and a 1DC compiler devel-
oped for an existing LPA, IMAP-VISION[4], are first
described. Then, for the categories of low to in-
termediate level image operations, a guideline for
their parallel SIMD linear array algorithm devel-
openlent using 1DC is provided. The guideline is
consisted of five basic parallelizing methods: row,
colum,n., rour-systolic, slan,t-systolic, and stack-based.

'Address: 4-1-1 Miyazaki, Miyamae-ku, Iiawasaki, 216,
Japan. E-mail: sholinopat . cl .nec. co. jp

'Address:
Kanagawa Science Park 3-2-1 Sakado, Takatu-ku, Iiawasaki,
213, Japan. E-mail: k-satooats .nis.nec. co. jp

Furthermore, overheads for some of the paralleliz-
ing methods are discussecl and compared; based on
which future subjects for further improving the per-
formance of LPAs for a wider variety of image pro-
cessing tasks are suggested.

2 1DC Language Features and its
compiler for IMAP-VISION

1DC is designed as an enhanced C language, with
the enhancement limited only to essential necessities
for the sake of clarity, and also for the support of
a virtual LPA (which is descril>ecl in the beginning
of section 3). The enliancement of 1DC from C is
straiglitforward: (a) extended tleclaration of enti-
ties which associated to the P E array, (I>) extended
constructs for selecting active processor groups, and
(c) extended operators for manipulating data on the
P E array.

Entities are declared as either sep (or separate)
and associated to the P E array, or scalar and is
associated to the central controller. Each sep en-
tity represents a linear array of scalar data where
each element of which resides on the correspond-
ing PE. Extended constructs for selecting active P E
groups partition tlie PEs into two sets, where the
first set is composed by PEs that verify the pretl-
icate of the construct, and the second set is com-
posed by all other remaining PEs. These constructs
are given a preceding m for their notation such
as maf. . .[melse. . .], murhrle. . ., and rnfor(. . .;. . .;. . .),
where the only difference from standard C is the
predicate must be a sep expression.

In the same way, extended operators are given
a preceding colon for their notation. Assuming
cO,. - .,cn as constants, Esep and E,,, respectively
as a sep and a scalar expression, : (cO,. .,cn :) rep-
resents a sep constant with value cO,. . -,cn on the
Oth,. . .,nth P E counting from the leftmost in a LPA;
"Esep: [Esca :I" extracts the scalar element of E,,,
on the E,,,th PE; " :>Esep" and " :<Ese," respec-
tively refers to the scalar element of Eaep located a t
its left and right adjacent PEs; finally ":&&Esep7' and
":IIEsep" respectively produces a scalar entity whose
value is the logical AND and OR of every scalar el-
enlent of E,,,.

Currently a 1DC compiler has been developed for

IMAP-VISION[4], a highly integrated single-board
LPA with 256 PEs. Fig.l(a) shows the current pro-
gramming environment for IMAP-VISION based on
1DC. Due to the succinct language design and t,he
RISC like instruction-set of MAP-VISION, the 1DC
conlpiler has achievetl codes competitive with liand-
written asseinbly codes (Fig.l(b)). The compiler can
also produce C source codes for running 1DC on na-
tive PCs and workstations. The X window based de-
buggers provide not only both assembly and source
level clehugging facilities, but also provide function-
alities sucll its interactive varial~le acliustment which
is useful for parameter t,uning in real-time image ap-
plications.

1 DC source program
1 prepmccswng

1 DC Compiler

Assembler
optunizatlon

gmuplng

a X window based uhlrtres

(a)The IMAP-VISION programming environment

(Image size 256x256, using IMAP-VISION in 40MHz)

(b) Some evaluation results

Figure 1: 1DC Programmiilg Environment

3 Efficient Implementation of Image
Processing on LPAs

Low and intermediate level image operations can
be classified into some categories (Fig.2, partly
based on [5]). In this section, we provide a guicleline
for parallel SIMD linear array algorithm develop-
ment using 1DC.

Our target maclline is a virtual LPA (Fig.3).
The source and destination image sizes are 110th
NROW xNCOL where NCOL is equal to the number
of P E (PENO). Thus, each image column is mapped
onto a different PE, and is stored in the PE's lo-
cal memory. All PEs are controlled by a central
controller, which perfornls instructioll broadcast, se-
quential access to any address of tlie local memory of

Local Neighborhood
Point Operation (PO) Operation (LNO) Global Operation

Geometric
Operation (W)

Recursive Neighborhood
Cueration (RNO)

Region Operation (RO)

Figure 2: Low and intermediate level image process-
ing categories

any PE, and also status information reduction (re-
ceives the logical OR or AND of status signals from
all PEs). Each P E can perform access to different
local inenlory address (indirect addressing facility).
Interconnections exists only between adjacent PEs,
while the leftmost P E is connected to the rightlnost
PE.

Figure 3: Arcllit,ecture of a virt,ual LPA

3.1 Point Operation (PO) and Local
Neighbourhood Operation (LNO)

Both P O and LNO are tlle basic parallel pixel(s)-
to-pixel transformation process betureen source and
destination images. The straightforward parallel im-
plementation for P O and LNO on LPAs is to operate
on each image row (NCOL pixels) simultaneously by
all PEs, and is repeated NROW times. Hereafter
this basic method is referred to as row method.

The 1DC description for the 3 x 3 average filtering
operation (a typical LNO), is given in the following.
The sum of eacli local 3 x 3 pixels are obtained by
combining the sum of three 1 x 3 pixels produced by
each P E with the result of its two adjacent PEs.

sap unsigned char srcCNROWl ,ds t [NROW] ;
v o i d average-f i l t e r o

'sep unsigned int acc;
i n t i;

for(i=l; i<NROW-1; i++)C
acc = src[i-11 + src[i] + src[i+l];
acc += (:<act + :>act);
dst [il = (acc / 9);

1

3.2 Global Operation (G10) and Geo-
metrical Operation (GeO)

G10 is mainly used for gathering information
from pixels in order to produce a single value or a
vector of values as the result, while GeO is mainly
used for repositioning pixels. On LPAs, both G10
and GeO can he efficiently achieved by first letting
all PEs simnltaneonsly perform vertical and then
horizontal data transfer, or vice versa. Vertical data
transfer can he achieved by using the indirect ad-
dressing niecllanism which enables eacli P E simul-
taneously access a pixel value in each different row.
Horizontal data transfer can be achieved by utiliz-
ing the P E interconnectio~i to simultaneously shzft
up to SCOL data in a fixed (left or right) direction.
By using lDC, vertical data transfer is expressed by
using sep entities as array indexes, and llorizontal
data transfer is expressed by using a sep entity as
the source and as well the destination operand of
the : > or : < operator in a loop. Hereafter the for-
mer is referred to as column method, mcl the later
is referred to as roui-systolrc method.

In the following, the 1DC description for the ini-
age histogram calculation (a typical GlO), is given
as an example for ixnplenienting GlOs on LPAs. The
original algorithm can be found in some where like
in [9]. First, based on the co1um.n method, each PE
generates in its local xnelnory (a column-wise his-
togram array), whose starting address differs in a
regular way according to each P E number. Next,

Example of a column-wise histogram for a PE

sult

the number g (g=0 ... 3) written in the figure shows the place
where the histogram result for pixel value g should be stored

Figure 4: Row systolic operations on column-wise
llistograxns for a 4x4 image on a LPA with 4 PEs.

in tlie following (tlie original algorithm is from [lo]).
By performing consecutively tlle following 1) - 3),
tlie source image is rotated 90 degree as sl~own in
Fig. 5: 1) a P E number dependent vertical sllift of
each image column (based on tlie column metliod),
2) a row number dependent horizontal shift of each
image row (1)ased on t,lie rout-systolic methotl), and
filially 3) a P E number dependent vertical sllift of
eacli image column. The performance of this 1DC
description is 0.58 msec, a3 shown in Fig. l (b) .

void rotate90(srcstbl)
sep unsigned char srcn . tbl ;
C
int i ;

/* vertical shift */
for(i=O;i<NROW; i++) tbl[(i-PENUM)&255]= src[i] ;

/* horizontal shift */
for(i=O; i<NROW;i++) tbl [i] = tbl[i] :< (PENO-i) ;

/* vertical shift */
for(i=O;i<NROW;i++) src[i] = tbl[(i+PENUM+l)k255];

>

0 5 g 5 255, is ol~tained on tlie PE wliose PE num-
ber is g. Fig. 4 illustrates briefly the above summing
sequence, using a LPA with only 4 PEs aiid a 4 x 4
sized source image for brevity. Not,e t h t in the fol-
lowing 1DC description, PENUM is a pre-defined sep
const,ant equal to : (1,2,- . -, P E N 0 :). Tlie per-
formance of this l D C description is 0.12 msec, as
sllourn in Fig. l (b) .

sep unsigned char srcCNROW] ,hst [256] ;
sep unsigned int histogram0
1
sep unsigned int result=O;

/* column-vise local histogram generation */
for(i=O;i<NROW;i++) hst [(src[i] - PENUH)k2551++;
/* summation of column-wise histogram results */
f or(i=O; i<NCOL; i++) result= : <(hst [i%256] + result) ;
return(result1;
1

Tlie l D C description for the 90 degree rotation (a
t,ypical GeO), ha--ed on t,he use of t l ~ e conihination
of cohl.m.n m.ethod and row-systolic m.eth,od, is shown

the orlglnal Image 1st verl~cal hor~zontal shlfi 2nd vert~cal
(array src) + shift (array tbl) + (array tbl) + sh~ft (array src)

Figure 5: 90 degree rotation of a sample image

3.3 Recursive Neighbourhood Opera-
tion (RNO)

For updating each pixel, RNOs refer the pixel
value of its neighhourhood pixels which have already
been updated. In consequence, for RNOs constraiilts
exist in pixel updating order between eacli pixel
and its neigl~l~ourliood pixels. However, as tlie con-
st,raints are in most cases static, they are expressil~le
as a recursive mask such as those shown in Fig. G(a).
Among Fig. G(a), A and B are t,lie t,ypical recursive
masks for respectively left-top to right-bottom and
right,-bottom to left-top raster scan operation, the
most frequently used RNOs.

A parallelizing nietllotl called s1nn.t-systolic is pro-
posrtl licrr for efficiently implemcnt,ing RNOs on
LPAs, In slnn,t-systolic nietliod, P E s are activat,ccl
successively ill a fixctl tlircction, wllile each act,ivat,ed
P E uptlates tlie corresponding pixel aft,er every fixed
t,imr interval. As a result, a slant pixel-updating-
wave is generatetl, whose slant angle is in propor-
t,ioli t,o tlie fixetl t,ime interval. For N 2 2, it takes
N x (NROW-l)+NCOL iterations for a (2N-1) x N
sized rccnrsivc nlask, ant1 Nx(NC0L-l)+NR.OW it,-
crat,ions for a N x (2N- 1) sizetl recursive mask, t,o pro-
ceetl t,llc ~)ixel-~~~tlatilig-~va~~e from one corner t,o t,lie
opposite corner of tlie inlage (Fig.G(b)). Note tliat
t,lle fixctl tinle ilitcrvals are 1,otli X-1.

Tlie l D C tlcscription for tlie forward scan of the
t,wo-sca~i tlist,ance transform(G], a RNO wliicli uses
t,llc rccrlrsivc niask A and B (Fig. G(a)), for t,lle
forwartl ant1 t,lie hack~vard scan, is shown in t.lie fol-
lowilig. Two sep entities, s ant1 y are used, wliere s
is for l)rol~agatilig an activation signal from t,lic left-
nlost P E to the riglitmost PE. Each P E to wllicli
tlic siglial lias arrivetl, s tarts t,o increase y in every
itcrat,ion. Ho\vever, tlic P E ~~p t l a t , e s the pixel a t po-
sit,ion ?//2 only 1i711e11 y is an even nunlber in order to
ohserve the t,inle int,crval imposed by tlie recrlrsive
mask A (for the above case the t,inle ilit,erval is one,
as N et111aIs t,o two).

s e p unsigned char img[NROW]; / * source image */
d e f i n e D 3 /* 8-nbh d i s t a n c e */
d e f i n e S 2 /* 4-nbh d i s t a n c e */
Xdefine min(a ,b) (((a) > (b)) ? (b) : (a))

v o i d d t c s e p unsigned char y , s e p unsigned char in[])

' s e p unsigned char p l , p 2 , p 3 , p 4 , p 5 ;

p i = : > i n [: < y - 1 1 ; p2= in[y-11; p35 :< in[:>y-11;
p4= : > i n [: < y l ; p5= i n [y l ;
re turn min(min(min (p5 ,pl+D) ,min(p2+S ,p3+D)) ,p4+s) ;

>
void s l a n t - s y s t o l i c - m e t h o d 0
I

i n t i .
s e p ir;t s , y ;
f o r (y=O,i=O; i< 2*(NROW-l)+NCOL; i + +) (

s : [O:] = 1 ;
mif (s && (y++ &1)==0)

d t (y > > l ,img) ;
s = : > s ;

> >
Note that , tluc to the prescril~ed time interval, for

RNOs using a (2N-1) x (2N-1) sized recursive mask,
1111 t o N s~icccssive pixel-~lptlating-\vaves can 11e im-
plcnicntetl ill ail ovcrlapl>ctl way (Fig.G(c)) wit,h
sonic niinor niotlification of the a l~ove 1DC program
inclntling 1)rcl)i~rilig X sets of s alltl y.

3.4 Region Operation (RO)

Olir of tlic frequclitly used procedure in image
processing is segnielltatioli. After performing seg-
mentation, usually variorls regiolls with arbitrary
sizes ant1 slial>cs are found ~vitllin tlie image. R O
call 1)e usctl for visiting sollle or all pixels of each re-
gion intlcpentlrntly, ill ortlcr to protluce a vector of
results wliose elcnielits eacli of wliicll c o r r e ~ p o n d ~ to

pixel 0 is updated by using the value of pixel
A) 1,2,3.4 8) 5.6,7.8 C) 2,4 D) 5.7

which were updated in the prevlous ~teration.

(a) Recursive mask examples.

target

"" f'
pixel

2N- 1

NXINROW-1) + NCOL NX(NC0L-1) A NRnW

(b) Row (left) and column direction (right)
pixel-updating-waves.

Ihe overlapped row direction (left) and
column direction (right) pixel-updating-waves (N=3)

N successive pixel-updating-waves can proceed
in an overlapped way either in row or column direction.

(c) Overlapping pixel-updating waves

Figure 6: Implementation aspectas of the s1nn.t-
systolic metllotl for R S O s

eacli region. Tlie feat,ure of R O is t,liat, ulilike ot,lier
image operation cat,egorics, source pixels are now
scatt,ercd and locat,ed witliill specific regions. eacll
being separat.ed 11y non-source pixels. Furt~llcrnlorc,
pixels wit,l~in a region nlay be uptlatetl in p;~rallcl
(PO, LNO, GeO, or G I 0 wit,liin rcgiolis: prr.mlle1
RO), or constrailits nlay exist in t,lle uptlatillg or-
der of eacli pixel ill tlie region (R,NO wit,liin rrgiolis:
sequential RO), or even pixels which licetl t,o be up-
dat,ed may change dynamically (R O within regions:
dyn,nm,ic RO). Examples for parallel R 0 are erosion,
dilation, relaxat,ion scl~elllcs (such as Snakcs[8]). Ex-
amples for sequential R O are contour tracing, dis-
t,ance transform, and a t,ypical example for dyn.amic
R O is skeletonizat,ion or thinning. Note that,, d?j-

n,n.m.ic R 0 is not furt,ller tliscussed in t,liis paper clue
to space limitation.

Usually ROs are colisitlcretl as illtcrmctliatc level
image operat,ion, ant1 liave liot Ixcn efficiclitly in1-
plementetl on LPAs t,lius far. Illstcad, tlie idea of

parallelizing the imple~nentation of R 0 has been to
use a SIMD-MIMD llierarchy architecture, and as-
sign the operat,ion for each region to each MIMD
processor. Ho~ivever, we propose in the following a
parallelizing technique called stack-based method, by
which efficient implementation of ROs on LPAs can
he achieved to a large extent.

The stack-based method is consisted of two pro-
cessing phases during each of wllicll every P E of the
LPA simulates a software stack in it,s local memory.
In tlle first processing phase (the seed pixel detection
phase), all pixels are visited once I>y row method in
order t,o fincl a t least one specific feature pixels (such
as contour or peak point pixels) for each region, and
push each po i~~t ,e r of the featmure pixel into t.he stack
top of t,lle P E which possess the pixel in its local
memory. In t,he second processing pllase (t,he p ~ ~ s h
and pop pllase), 1) for each P E whose stack is not
empt,y, pop t,llc pixel pointer a t tlle stack top and
perforin t,lle R 0 specific operation upon the pixel
point,ecl hy the point,cr (the focwed pixel hence); 2)
for each neigl~bonrl~ood pixel of t,he focused pixel
whicll satisfies t,he RO specific condit,ion (the pu.sh
condition hence), pus11 its pointer to t,lle st,ack t,op
of t,lle PE wllicll possesses it in its local memory; 3)
continue 1) - 2) unt,il all P E st,acks are empty.

The 1DC description for the above procedures 1) - 3) are shown in the following, where I sSeedO,
Pixel-op (1. and Push-nbh-ptrs (1 are RO specific
functions.

void stack-based-method(sep int stack0, sep int imgC1)

' int i;
sep unsigned char sp,x,IsSeedo;
void pixel-op(), push_nbh-pixelso ;

for (i=O; i<NROW; it+) /* seed pixel detection */
mif (IsSeed(i)) stack[sp++]=i;

mvhile (: l lsp) { /* push and pop */
x = stack[--sp] ;
Pixel-op(x, imn) ;

Parallel RO Sequential RO
(case for contour tracing)

The maximum number of pixels Maximum trace length
one PE results to process dominates the total

(ex. p+q pixels in the above figure) processing time
jominates the total processing time

Figure 7: Performance aspect,^ of the stack-based
method for ROs

each pixel-upclating-wave differs, as the control over-
llead for proceeding each wave forward an unit pixel
distance is different between parallelizing methotls.
Control overllead is less for rour, column, and rour-
systoltc metllods tllan for slant-s?~stolzc and stack-
based methods. Generally control overhead for
stack-based method is larger than that for slant-
systolic method, a.5 dynamic propagation and detec-
tion of region pixels performed by the former are
usually a heavier task than static sclleduling of the
pixel processing order performed hy the later.

row column row-systolic
I

P0,LNO GIO, GeO -
Push-nbh-ptrs(x);

> > slant-systolic -
By providing propcr push condition for each RO,

only pixels 1,elonging t,o the same region as the fo-
cused pixel, and together pixels which really need
to 11e processetl, are ident,ified and pushed into P E
stacks, antl tlllls 1,eing processed. As a result, for RNO
parallel ROs, the maximum number of pixels wllicll

stack-based
I 1

. -
has to he processed by a PE, and for seiuential ROs
such as contour t,racing, the maximum numl~er of
pixels contai~led in a t,race, donlinates t,he process- Figure 8: Pixel-updating-waves for each basic par-

ing t h e of tlle entire RO (Fig. 7). allelizing method

By taking into account the control overhead de- Overhead Estimation scribed al,ove, selection can he made between stack-
ing Methods on LPAs based and row met,liod for parallel RO, or betwecn -

stack-based and slant-systolic method for sequential
Each of tlle five basic parallelizing methods de- R O , according to tlle sizes of regions to he processed.

scril~ed in t,lle previous section result,s t,o provide a Tlle control overllead of the stack-based met,llod is
pixel-uptlat,ing-\17a\re t,llat sweeps tllrougll the ent,ire now trading off with the structural overhead, that,
source image or all regions within tlle source im- is, the overhead for rour or slant-systolic nlet,llod t,o
age (Fig. 8). However, t,he d i r e d o n and speed of operate on unnecessary pixels (pixels not belonging

to any region), and to neglect the discovery of other
ready pixels (pixels wliicli have already fulfilled the
i~nl~osccl pixel updating order constraints).

Table 1 sliows tlie processing times on IMAP-
VISION, using respectively stack-based and slant-
systolzc metliotl, to perform the previously described
two-scan distance transform, a RNO and together
a sequentzal R 0 if regarding groups of foreground
pixels as regions. Programs are written in 1DC.
Tlie four 256x256 test images being used have a
gradually iiicreasiiig region sizes. Tlie RO specific
functions used for tlie stack-based implementation
of the forward scan part of the distance trailsforin
are shown in 1DC in the following as an example.
Xdefine P o ~ e d 0 -.--- -

Xdefine fiAished 1
Xdefine Pushed 2
sep unsigned char ImgCNROW] ,Tmp[N~oWl ,Stack[NROW/2] ;

sep unsigned char IsSeed(int i)
4

sep unsigned char r, IsContourPixel~) ;

mif (Imgci]) TmpCiI = Poped;
melse TmpCi] = Finished;
mif (r=~sContourPixel(Img,i)) Tmp[i] = Pushed;
return r;

>
/* use d t 0 as Pixel-op0 */
Xdefine Pixel-op(x,img) dt(x,img)

void pnbh4(sep unsigned char x)

' sep unsigned char a,b,c,d,e;
a= :>Tmp[:<x-l];b= Tmpcx-l];c= :<Tmp[:>x-11;
d= : >Tmp C: <XI ; e= Tmp [x] ;

mif ((e==Poped) kk (a k b t c k d)==Finished)){
Stack [ss++] =x;
Tmp[x] = Pushed;

> >
void Push-nbh-ptrs(sep unsigned char x)
I

pnbh4(:>x);
pnbh4(: <x+l) ; pnbh4(x+l) ; pnbh4(:>x+l) ;

>

(method (image1 1 image2 (image3 I image4 1
I stack-based I 4.8111s I 6.lnls I 7.9ms I10 . lms I
I slant-svstolic I 8.0ms I

Table 1: Processing time of two different paralleliz-
ing mctliods for the distance transform operation

According to Table 1, as the region sizes grow, the
control overhead of the stack-based rlietliod gradu-
ally overconies the structural overhead of tlie slant-
systolic met.1iod. This result implies architectural
subjects of LPAs for reducing control overheads pro-
tlucctl 11y tlie parallelizing methods, especially those
procluced 11y the stack-based metliod. A11 even het-
ter perforinance for ROs on LPAs can he achieved
if the subjects can he adequately solved in tlie near
future.

5 Conclusion

In this paper, a da ta parallel language succinctly
designed for a virtual LPA, and its compiler for an
existing LPA, are first described. Then, a guide-
line for parallel algorithm development using the
language, which consists of five basic parallelizing
method: row, column, row-systolic, slant-systolic,
and stack-based, are provided. Each category of low
to intermediate level image operations has sliown to
he efficiently implemented on LPAs using each or
a co~nhination of the parallelizing methods. Fur-
thermore, overhead produced by the two paralleliz-
iiig methods, slant-systolic and stack-based, are dis-
cussed and compared. A conclusion is that, further
improvement of performance on LPAs for region op-
erations can he achieved, hy architectural support,^
for reducing the control overhead of the stack-based
metliod.

References

[I] T.J.Fountain, "The CLIP7A Image Processor," IEEE
Trans. on Pattern Analysis and Machine Intelligence
(PAMI), Vol.10, No.3, pp.310-319,1988.

[2] L.A. Schmitt et al.,"The AIS-5000 Parallel Proces-
sor," IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), Vol.lO,No.3, pp.320-330,1988.

131 Y. Fujita et al.,"IMAP: Integrated Menlory Array
Processor," Journal of Circuits, Systems and Com-
puters", Vo1.2, No. 3, pp.227-245, 1992.

[4] Y. Fujita et al.,"IMAP-VISION: An SIMD Proces-
sor with High-Speed On-chip Memory and Large Ca-
pacity External Memory", Proc. of IAPR Workshop
on Machine Vision Applications (MVA), Nov. 1996.

[5] P. P. Jonker, "Architecttlres for Multidiinensional
Low- and Intermidiate Level Image Plocessing," Proc.
of IAPR Workshop on Machine Vision Applications
(MVA), pp.307-316, 1990.

[6] G. Borgefors, "Distance Transformations in Digi-
t,al Images," Computer Vision, Graphics, and Image
Processing, Vo1.34, pp.344-371, 1986.

171 S.I<yo et al., "Efficient Implementation of Image Pro-
cessing Algorithms on Linear Processor Arrays using
the Data Parallel Language 1DC and its Compiler",
Technical Report of Information Processing Associ-
ation of Japan (IPSJ), Computer Architecture Sec-
tion 119-17, pp.95-100, Aug. 1996. (In Japanese)

[8] M.I<ass et. a1,"Snakes: Active Contour Models", In-
ternational .Journal of Computer Vision,321-331 (1988).

[9] P.E Danielsson, "Parallelsim in Low Level Vision Al-
gorithms and Architectures", Proc. of the 6th Scan-
dinavian Conference on Image Analysis (SCIA), Fin-
land, pp.25-31, 1989.

[lo] A.Tanaka et.al, "A Rotation Method for Raster Im-
age Using Skew Transformation", Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, Mi-
ami, pp.272-277, 1986.

[11] D.R.Helman et.al, "Efficient Image Processing Al-
gorithms on the Scan Line Array Processor", IEEE
Trans. on Pattern Analysis and Machine Intelligence
(PAMI), Vo1.17, pp.47-56, Jan. 1995.

