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Abstract

SIMD linear processor arrays (LPAs) have re-
ceived a great deal of interest as a suitable parallel
architecture for image processing. However, few pos-
sess a high level programming environment support,
and the range of image processing tasks which can
be efficiently implemented is unclear. In this paper,
we first describe a data parallel language succinctly
designed for a virtual LPA, and also a compiler for
an existing LPA. Next, we provide a guideline for
parallel SIMD linear array algorithm development
using the language., The guideline is consisted of
five basic parallelizing methods, by using which effi-
cient implementations are shown for each category of
low to intermediate level image operations. We also
suggest that further improvement of performance on
LPAs can be achieved, by architectural supports for
reducing the control overhead of some parallelizing
methods.

1 Introduction

SIMD linear processor arrays (LPAs) have re-
ceived a great deal of interest as a suitable parallel
architecture for image processing [1]-[3]. However,
when focusing on the software environment, few pos-
sess a high level programming language support. Al-
though some parallel image processing algorithms
have been proposed thus far[9]-[11], currently there
is a lack of a clear idea to what extent can paral-
lelism be exploited for image tasks by using LPAs.

In this paper, 1DC (One Dimensional C), a suc-
cinctly defined data parallel language which sup-
ports a virtual LPA, and a 1DC compiler devel-
oped for an existing LPA, IMAP-VISION[4], are first
described. Then, for the categories of low to in-
termediate level image operations, a guideline for
their parallel SIMD linear array algorithm devel-
opement using 1DC is provided. The guideline is
consisted of five basic parallelizing methods: row,
column, row-systolic, slant-systolic, and stack-based.
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Furthermore, overheads for some of the paralleliz-
ing methods are discussed and compared; based on
which future subjects for further improving the per-
formance of LPAs for a wider variety of image pro-
cessing tasks are suggested.

2 1DC Language Features and its
compiler for IMAP-VISION

1DC is designed as an enhanced C language, with
the enhancement limited only to essential necessities
for the sake of clarity, and also for the support of
a virtual LPA (which is described in the beginning
of section 3). The enhancement of 1DC from C is
straightforward: (a) extended declaration of enti-
ties which associated to the PE array, (b) extended
constructs for selecting active processor groups, and
(c) extended operators for manipulating data on the
PE array.

Entities are declared as either sep (or separate)
and associated to the PE array, or scalar and is
associated to the central controller. Each sep en-
tity represents a linear array of scalar data where
each element of which resides on the correspond-
ing PE. Extended constructs for selecting active PE
groups partition the PEs into two sets, where the
first set is composed by PEs that verify the pred-
icate of the construct, and the second set is com-
posed by all other remaining PEs. These constructs
are given a preceding m for their notation such
as mif...[melse. .., mwhale. .., and mfor(.......;.
where the only difference from standard C is tllc
predicate must be a sep expression.

In the same way, extended operators are given
a preceding colon for their notation. Assuming
c0,---,cn as constants, Ey, and Es., respectively
as a sep and a scalar expression, : ( ¢0,-++,cn :) rep-
resents a sep constant with value c0, --,cn on the
Oth,- - -,;nth PE counting from the leftmost in a LPA;
"Eyept [Egeq 11" extracts the scalar element of E,,,
on the Ey.qth PE; ":>E,.," and ":<E,.," respec-
tively refers to the scalar element of Ej,p located at
its left and right adjacent PEs; finally ":2&E,.," and
"i||Esep” respectively produces a scalar entity whose
value is the logical AND and OR of every scalar el-
ement of E,,,,.

Currently a 1DC compiler has been developed for



IMAP-VISION[4], a highly integrated single-board
LPA with 256 PEs. Fig.1(a) shows the current pro-
gramming environment for IMAP-VISION based on
IDC. Due to the succinct language design and the
RISC like instruction-set of IMAP-VISION, the 1DC
compiler has achieved codes competitive with hand-
written assembly codes (Fig.1(b)). The compiler can
also produce C source codes for running 1DC on na-
tive PCs and workstations. The X window based de-
buggers provide not only both assembly and source
level debugging facilities, but also provide function-
alities such as interactive variable adjustment which
is useful for parameter tuning in real-time image ap-
plications.
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(a)The IMAP-VISION programming environment

. . gssembly compiler ratio | ime
application Stos (A) | steps 8)| (B/A)| 51 Sovc
binarization | 1547 2402 | 1.55 | 0.061
average filter [ 3600 6430 | 1.15 | 0.161

histogram 4039 4872 |1.21 | 0.122
90 deg. rotation| 20696 | 23326 | 1.13 | 0.583

(Image size 256x256, using IMAP-VISION in 40MHz)

(b) Some evaluation results

Figure 1: 1DC Programming Environment

3 Efficient Implementation of Image
Processing on LPAs

Low and intermediate level image operations can
be classified into some categories (Fig.2, partly
based on [5]). In this section, we provide a guideline
for parallel SIMD linear array algorithm develop-
ment using 1DC.

Our target machine is a virtual LPA (Fig.3).
The source and destination image sizes are both
NROW x NCOL where NCOL is equal to the number
of PE (PENO). Thus, each image column is mapped
onto a different PE, and is stored in the PE’s lo-
cal memory. All PEs are controlled by a central
controller, which performs instruction broadcast, se-
quential access to any address of the local memory of
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Figure 2: Low and intermediate level image process-
ing categories

any PE, and also status information reduction (re-
ceives the logical OR or AND of status signals from
all PEs). Each PE can perform access to different
local memory address (indirect addressing facility).
Interconnections exists only between adjacent PEs,
while the leftmost PE is connected to the rightmost
PE,

Controller

Local-Memory

JPE

Figure 3: Architecture of a virtual LPA

3.1 Point Operation (PO) and Local

Neighbourhood Operation (LNO)

Both PO and LNO are the basic parallel pixel(s)-
to-pixel transformation process between source and
destination images. The straightforward parallel im-
plementation for PO and LNO on LPAs is to operate
on each image row (NCOL pixels) simultaneously by
all PEs, and is repeated NROW times. Hereafter
this basic method is referred to as row method.

The 1DC description for the 3x3 average filtering
operation (a typical LNO), is given in the following.
The sum of each local 3x3 pixels are obtained by
combining the sum of three 1x3 pixels produced by
each PE with the result of its two adjacent PEs.

sep unsigned char src[NROW] ,dst [NROW] ;
void average_filter()

sep unsigned int acc;

int i;



for(i=1; i<NROW-1; i++){
acc = src[i-1] + src[i] + src[i+1];
acc += (:<acc + :>acc);
dst[i] = (acc / 9);

3.2 Global Operation (GlO) and Geo-
metrical Operation (GeO)

GIO is mainly used for gathering information
from pixels in order to produce a single value or a
vector of values as the result, while GeO is mainly
used for repositioning pixels. On LPAs, both GIO
and GeO can be efficiently achieved by first letting
all PEs simultaneously perform vertical and then
horizontal data transfer, or vice versa. Vertical data
transfer can be achieved by using the indirect ad-
dressing mechanism which enables each PE simul-
taneously access a pixel value in each different row.
Horizontal data transfer can be achieved by utiliz-
ing the PE interconnection to simultaneously shift
up to NCOL data in a fixed (left or right) direction.
By using 1DC, vertical data transfer is expressed by
using sep entities as array indexes, and horizontal
data transfer is expressed by using a sep entity as
the source and as well the destination operand of
the :> or :< operator in a loop. Hereafter the for-
mer is referred to as column method, and the later
is referred to as row-systolic method.

In the following, the 1DC description for the im-
age histogram calculation (a typical GlO), is given
as an example for implementing GlOs on LPAs. The
original algorithm can be found in some where like
in [9]. First, based on the column method, each PE
generates in its local memory (a column-wise his-
togram array), whose starting address differs in a
regular way according to each PE number. Next,
these column-wise histogram arrays are summed
up in a right to left direction based on the row-
systolic method, by which after PENO iterations,
the number of pixels whose grey value is equal to g.
That is, the histogram result for grey value g where
0 < g <255, is obtained on the PE whose PE num-
beris g. Fig. 4 illustrates briefly the above summing
sequence, using a LPA with only 4 PEs and a 4x4
sized source image for brevity. Note that in the fol-
lowing 1DC description, PENUM is a pre-defined sep
constant equal to : ( 1,2,---;, PENO :). The per-
formance of this 1DC description is 0.12 msec, as
shown in Fig. 1(b).

sep unsigned char src[NROW] ,hst[256];

sep unsigned int histogram()

sep unsigned int result=0;

/* column-wise local histogram generation */
for(i=0;i<NROW;i++) hstf(src[i? - PENUM)&255] ++;

/* summation of column-wise histogram results #*/
for(i=0;i<NCOL;i++) result= :<(hst[i}256] + result);
return(result);

The 1DC description for the 90 degree rotation (a
typical GeQO), based on the use of the combination
of column method and row-systolic method, is shown
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Figure 4: Row systolic operations on column-wise
histograms for a 4x4 image on a LPA with 4 PEs.

in the following (the original algorithm is from [10]).
By performing consecutively the following 1) ~ 3),
the source image is rotated 90 degree as shown in
Fig. 5: 1) a PE number dependent vertical shift of
each image column (based on the column method),
2) a row number dependent horizontal shift of each
image row (based on the row-systolic method), and
finally 3) a PE number dependent vertical shift of
each image column. The performance of this 1DC
description is 0.58 msec, as shown in Fig. 1(b).

void rotate90(src,tbl)

sep unsigned char src[],tbl[];
{int i;

/* vertical shift */

for(i=0;i<NROW;i++) tbl[(i-PENUM)&255]= src[i];

/* horizontal shift =/
for(i=0;i<NROW;i++) tbl[i] = tbl[i] :< (PEND-i);

/* vertical shift =/
for(i=0;i<NROW;i++) src(i] = tbl[(i+PENUM+1)&255];

2nd vertical
=+ shift (array src)

1st vertical horizontal shift
=+ shift (array tbl) = (array tbl)

the original image

(array src)

Figure 5: 90 degree rotation of a sample image

3.3 Recursive
tion (RNO)

Neighbourhood Opera-

For updating each pixel, RNOs refer the pixel
value of its neighbourhood pixels which have already
been updated. In consequence, for RNOs constraints
exist in pixel updating order between each pixel
and its neighbourhood pixels. However, as the con-
straints are in most cases static, they are expressible
as a recursive mask such as those shown in Fig. 6(a).
Among Fig. 6(a), A and B are the typical recursive
masks for respectively left-top to right-bottom and
right-bottom to left-top raster scan operation, the
most frequently used RNOs.



A parallelizing method called slant-systolic is pro-
posed here for efficiently implementing RNOs on
LPAs. In slant-systolic method., PEs are activated
successively in a fixed direction, while each activated
PE updates the corresponding pixel after every fixed
time interval. As a result, a slant pixel-updating-
wave is generated. whose slant angle is in propor-
tion to the fixed time interval. For N > 2, it takes
Nx(NROW-1)4NCOL iterations for a (2N-1)xN
sized recursive mask, and Nx(NCOL-1)4+NROW it-
erations for a N x(2N-1) sized recursive mask, to pro-
ceed the pixel-updating-wave from one corner to the
opposite corner of the image (Fig.6(b)). Note that
the fixed time intervals are both N-1.

The 1DC description for the forward scan of the
two-scan distance transform[6]. a RNO which uses
the recursive mask A and B (Fig. 6(a)), for the
forward and the backward scan, is shown in the fol-
lowing. Two sep entities, s and y are used, where s
is for propagating an activation signal from the left-
most PE to the rightmost PE. Each PE to which
the signal has arrived, starts to increase y in every
iteration. However, the PE updates the pixel at po-
sition y/2 only when y is an even number in order to
observe the time interval imposed by the recursive
mask A (for the above case the time interval is one,
as N equals to two).

sep unsigned char img[NROW]; /* source image */

#define D 3 /+ 8-nbh distance */
#define S 2 /+* 4-nbh distance */
#define minCa,b) (((a)>(b))? (b) : (a))

void dt(sep unsigned char y, sep unsigned char in[])

sep unsigned char pl,p2,p3,p4,p5;

pil= :>in[:<y-1]; p2= in[y-1]; p3=
p4= :>in[:<y]l; pS= inlyl;
return min(min(min(p5,p1+D) ,min(p2+S,p3+D)) ,p4+S);

:<in[:>y-1]1;

void slant-systolic-method()
int i;
sep int s,y;

for (y=0,i=0; i< 2#(NROW-1)+NCOL; i++) {
s:[0:] = 1;
mif (s &2 (y++ &1)==0)
dt(y>>1,img);
s = :7s;
}
i

Note that, due to the prescribed time interval, for
RNOs using a (2N-1)x(2N-1) sized recursive mask,
up to N successive pixel-updating-waves can be im-
plemented in an overlapped way (Fig.6(c)) with
some minor modification of the above 1DC program
including preparing N sets of s and .

3.4 Region Operation (RO)

One of the frequently used procedure in image
processing is segmentation. After performing seg-
mentation, usually various regions with arbitrary
sizes and shapes are found within the image. RO
can be used for visiting some or all pixels of each re-
gion independently, in order to produce a vector of
results whose elements each of which corresponds to
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Figure 6: Implementation aspects of the slant-
systolic method for RNOs

each region. The feature of RO is that, unlike other
image operation categories, source pixels are now
scattered and located within specific regions. each
being separated by non-source pixels. Furthermore,
pixels within a region may be updated in parallel
(PO, LNO, GeO, or GIO within regions: parallel
RO), or constraints may exist in the updating or-
der of each pixel in the region (RNO within regions:
sequential RO), or even pixels which need to be up-
dated may change dynamically (RO within regions:
dynamic RO). Examples for parallel RO are erosion,
dilation, relaxation schemes (such as Snakes|[8]). Ex-
amples for sequential RO are contour tracing, dis-
tance transform, and a typical example for dynamic
RO is skeletonization or thinning. Note that, dy-
namic RO is not further discussed in this paper due
to space limitation.

Usually ROs are considered as intermediate level
image operation, and have not been efficiently im-
plemented on LPAs thus far. Instead, the idea of



parallelizing the implementation of RO has been to
use a SIMD-MIMD hierarchy architecture, and as-
sign the operation for each region to each MIMD
processor. However, we propose in the following a
parallelizing technique called stack-based method, by
which efficient implementation of ROs on LPAs can
be achieved to a large extent.

The stack-based method is consisted of two pro-
cessing phases during each of which every PE of the
LPA simulates a software stack in its local memory.
In the first processing phase (the seed pizel detection
phase), all pixels are visited once by row method in
order to find at least one specific feature pixels (such
as contour or peak point pixels) for each region, and
push each pointer of the feature pixel into the stack
top of the PE which possess the pixel in its local
memory. In the second processing phase (the push
and pop phase), 1) for each PE whose stack is not
empty, pop the pixel pointer at the stack top and
perform the RO specific operation upon the pixel
pointed by the pointer (the focused pizel hence); 2)
for each neighbourhood pixel of the focused pizel
which satisfies the RO specific condition (the push
condition hence), push its pointer to the stack top
of the PE which possesses it in its local memory; 3)
continue 1) ~ 2) until all PE stacks are empty.

The 1DC description for the above procedures 1)
~ 3) are shown in the following, where IsSeed(),
Pixel_op(). and Push_nbh_ptrs() are RO specific
functions.

void stack-based_method(sep int stack[], sep int img[])

: int i;
sep unsigned char sp,x,IsSeed();
void pixel_op(), push_nbh_pixels();

for (i=0; i<NROW; i++) /* seed pixel detection */
mif (IsSeed(i)) stack[sp++]=i;

mwhile (:]|sp) {
x = stack[--sp];
Pixel _op(x,img);
Push_nbh_ptrs(x);

/#* push and pop */

}
¥

By providing proper push condition for each RO,
only pixels belonging to the same region as the fo-
cused pirel. and together pixels which really need
to be processed, are identified and pushed into PE
stacks, and thus being processed. As a result, for
parallel ROs, the maximum number of pixels which
has to be processed by a PE, and for sequential ROs
such as contour tracing, the maximum number of
pixels contained in a trace, dominates the process-
ing time of the entire RO (Fig. 7).

4 Overhead Estimation of Paralleliz-
ing Methods on LPAs

Each of the five basic parallelizing methods de-
scribed in the previous section results to provide a
pixel-updating-wave that sweeps through the entire
source image or all regions within the source im-
age (Fig. 8). However, the direction and speed of
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Figure 7: Performance aspects of the stack-based
method for ROs

each pixel-updating-wave differs, as the control over-
head for proceeding each wave forward an unit pixel
distance is different between parallelizing methods.
Control overhead is less for row, colurmn, and row-
systolic methods than for slant-systolic and stack-
based methods. Generally control overhead for
stack-based method is larger than that for slant-
systolic method, as dynamic propagation and detec-
tion of region pixels performed by the former are
usually a heavier task than static scheduling of the
pixel processing order performed by the later.

row column row-systolic

B el
it
i S

PO,LNO

slant-systolic

GIO, GeO

Figure 8: Pixel-updating-waves for each basic par-
allelizing method

By taking into account the control overhead de-
scribed above, selection can be made between stack-
based and row method for parallel RO, or between
stack-based and slant-systolic method for sequential
RO, according to the sizes of regions to be processed.
The control overhead of the stack-based method is
now trading off with the structural overhead, that
is, the overhead for row or slant-systelic method to
operate on unnecessary pixels (pixels not belonging



to any region), and to neglect the discovery of other
ready pixels (pixels which have already fulfilled the
imposed pixel updating order constraints).

Table 1 shows the processing times on IMAP-
VISION, using respectively stack-based and slant-
systolic method, to perform the previously described
two-scan distance transform, a RNO and together
a sequential RO if regarding groups of foreground
pixels as regions. Programs are written in 1DC.
The four 256x256 test images being used have a
gradually increasing region sizes. The RO specific
functions used for the stack-based implementation
of the forward scan part of the distance transform
are shown in 1DC in the following as an example.

#define Poped 0
#define Finished 1
#define Pushed 2

sep unsigned char Img[NROW],Tmp[NROW],Stack[NROW/2];
sep unsigned char IsSeed(int i)
{

sep unsigned char r, IsContourPixel();
mif (Img[i]) Tmp(i] = Poped;

melse Tmp[i] = Finished;
mif (r=IsContourPixel(Img,i)) Tmp[i] = Pushed;
return r;

}

/* use dt() as Pixel_op() */
#define Pixel op(x,img) dt(x,img)

void pnbh4(sep unsigned char x)
{

sep unsigned char a,b,c,d,e;

a= :>Tmp[:<x-1];b= Tmplx-1];c= :<Tmp[:>x-1];

d= :>Tmp[:<x]; e= Tmp[x];

mif ((e==Poped) && (a & b & c & d)==Finished)){
Stack([ss++]=x;
Tmp[x] = Pushed;

}

}

void Push_nbh_ptrs(sep unsigned char x)

pnbh4(:>x);
pnbh4(:<x+1); pnbh4(x+1); pnbh4(:>x+1);

|  method | imagel | image2 | image3 | image4 |
stack-based | 4.8ms | 6.lms | 7.9ms [ 10.1ms
slant-systolic 8.0ms

Table 1: Processing time of two different paralleliz-
ing methods for the distance transform operation

According to Table 1, as the region sizes grow, the
control overhead of the stack-based method gradu-
ally overcomes the structural overhead of the slant-
systolic method. This result implies architectural
subjects of LPAs for reducing control overheads pro-
duced by the parallelizing methods, especially those
produced by the stack-based method. An even bet-
ter performance for ROs on LPAs can be achieved
if the subjects can be adequately solved in the near
future.

5 Conclusion

In this paper, a data parallel language succinctly
designed for a virtual LPA, and its compiler for an
existing LPA, are first described. Then, a guide-
line for parallel algorithm development using the
language, which consists of five basic parallelizing
method: row, column, row-systolic, slant-systolic,
and stack-based, are provided. Each category of low
to intermediate level image operations has shown to
be efficiently implemented on LPAs using each or
a combination of the parallelizing methods. Fur-
thermore, overhead produced by the two paralleliz-
ing methods, slant-systolic and stack-based, are dis-
cussed and compared. A conclusion is that, further
improvement of performance on LPAs for region op-
erations can be achieved, by architectural supports
for reducing the control overhead of the stack-based
method.
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