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Abstract 

We explain some limitations of regularization theory 
of early vision and formulate visual representation and 
learning as statistical mechanics of surfaces with 
defects. In this new paradigm, pinning energy consists 
of a set of local oriented regularization fields. To 

reconstruct a D dimensional surface, known data, 
generally a set of patches of 0, I,. . . , D - I dimensions, 
are taken as defects to "pin" the surface. Each 
realization of the surface pinned by the known data 
contributes a Boltzman weight and ensemble average 
over all realizations gives the reconstructed surface. In 
2D, we present a neural network dynamics to 
approximate the ensemble average. The dynamics 
displays recovering ID shapes from local pinning bars, 
collinear grouping, edge and region filling-in, illusory 
figure perception and perception of apparent brightness 
as a kind of dynamic phase transitions. 

1 Regularization Theory and Its Limitations 

Visual representation and learning can be seen as 
hypersurface reconstruction[l]. Regularization theory 
of early vision and the induced architecture, radial basis 
function (RBF) networks have become an important 
paradigm. Due to its mathematical simplicity and 
biological supports, RBF networks have been suggested 
as building blocks of the brain and used for object 
recognition and motion control[2]. However, 
regularization theory and the induced RBF architecture 
suffer from the following shortcomings 

I Quadratic functional are at best approximations to 
many cases, 

2 The inputs are supposed to be un-correlated, sparse 
points. However, in early vision, the input data are 
usually correlated, for example, a segment of contrast 
edge, a surface patch of constant curvature or 
intensity. The usual firnctionals are not good 
approximations in these cases because they don't use 
the correlative information. 

3 Linear superposition of RBFs contrasts vividly with 
massively connections in the brain cortex. 

Representing in a correlated way is the primary way 
used by the brain. For example, cells in the primary 
visual cortex respond most to simple bars of certain 
orientations and cells at higher hierarchy of visual 
cortex can represent more complex shapes through 
integrating inputs from lower hierarchy[3]. 

2 Representation and Learning as Statistical 
Mechanics of Surfaces with Defects 

Visual representation and learning can be generally 
seen as statistical mechanics of surfaces with 
defects(SMSD)[4]. Take 2D surface reconstruction as 
an example. Continuous surfaces ( D  = 2 )  can be seen 
as manifolds embedded in d = D + I = 3 dimensional 
space. The known data can be seen as pinning centers 
used to 'pin' the wandering surfaces in d = D + I = 3 
space. The effective energy functional is 

In (I), f is the surface. K l ,  K2 are regularization 

constants. V is differential operator. dp is integral 
measure. Epin is pinning energy or kernel energy. The 

last two terms are from stretching and bending modes. 
In usual regularization theory, the pinning centers are 



We do not have general solutions to Eq.(l)-(5). At 
un-correlated points and Epin = Oi-/Y ' The present, we suggest to use some powerful algorithms in 

partition function associated with (1) is statistical physics to solve Eqs.(3), (4). Here, we design 
a neural network dynamics involving LOWS for shape 
representation and visual learning. The dynamics can be 

z = c =P(- P H ( ~ ) )  (2) seen as approximation to the new paradigm at very low 
noise level. For illustration, we present the dynamics in 
2D for 1D shape represen-tation, perceptual grouping, 

Summation is over all possible surface configurations. ill us or^ figure perception and perception of apparent 

is a constant representing noise level. The brightness. In these cases, the effective pinnings we are 

reconstructed surface is then ensemble average interested are simple bars. 

Consider a 2D array of neurons, the system is 
described by the following equations 

(3) 
MI 

h = - - + ~ l + g ~ ( V  I)T+g2(v2 1 ) 2 + ~  R (6) 2 
Mean field approximation recovers the solution in 
standard regularization theory R = A I I  (r)((nlev)~Y + A U ( ~ ) ( ( ~ ~ ~ V ) I Y  

Intuitively, the best pinning to pin a D dimensional 
surface is a set of D dimensional patches. Here, we In (6), h is energy per site. I E [o, I ]  is state variable. 
suggest the pinning energy as R is regularization term at each pinning bar and the 

summation is over all pinning bars. Each R contains 
EPa = 1 ( f i - f f 4  + %)1 ( ( u r . v ) f y d p  + four terms as in (7). K is applied field. V is a 

j u l v j p  u 2 v p  ( 5 )  
differential operator. nl is the tangential direction of 

2 2 pinning bars. n 2  is the normal direction of pinning 
A 22 (r)  

+ -1 ( 6 2 . ~ ) ~ f  j d P  
bars. Summation in (8) is over specific receptive fields. 

2 F(.) is characteristic function. In this paper, for 
simplicity, we select receptive field and characteristic 

U ]  is the normal of the pinning patch. u21ul ,  and has function as 
two orthogonal unit vectors. r is the distance from the 
pinning center in the local coordinate(ul, u2). 

M 2 l  
h(r)2  0 ,  r -+ co, h(r)+ 0 is local oriented 
regularization field (LOW). We choose the condition 

F(M)=  -1, M 5 - 1  

hll(r)> A 2 /  ( r )  h12(r)> k22 (r) to penalize deviation 
( : - l < M < l  

from the tangential plane of the patch. 
[ J , ~ < l i - j l < ~  

i =  j 
Jrj. = 

3 Local Orientedly Regularized Neural 1 , otherwise 

Networks (LORNN) I 

q is the size of receptive fields. We adopt the following 
simple learning dynamics 



By (12), all connection weights in each neuron's 
receptive field update in the same way. 

Pinning bars induce an ensemble of oriented 
Gaussian(0G) or oriented exponential(0E) distribu- 
tion. An OG is 

X is along the tangential direction of pinning bars, Y 
lies in the normal direction of pinning bars. 

= nI/n2 > 1 is orientation coefficient. At every 
site, the input is nonlinear superposition of an ensemble 
of OGs. We only consider nonlinear superposition of 
two OGs and suggest 

11+ 12,  11 < e l  0' I 2  < e l  

11+12+~(11+12) 81111%2, 01s12se2  
11 + 12 + N 1112, otherwise 

(14) 

11, I2  are from two OGs at a site. P, N are two 

constants. el,  e2 are two thresholds. There is 
constraint between P,  N , 2 8 2  P = N e 2 e 2 .  Note that 

12) is not Continuous across these regions. 
LORF can be of any form satisfying 
h ( r ) 2  0; r + m, h(r)+ 0 . Here, we choose OG 

hii (0) (i, j = I, 2) is amplitude of LORF. 011, 01 are 

the sizes of OG in the tangential and normal directions 
of pinning bars respectively. rll, r l  are the distances 
from the pinning center along the tangential and normal 
direction of pinning bars respectively. 

4 Collinear Grouping, Filling-in and Perceptual 
of Apparent Brightness as Dynamics Phase 
Transitions 

LORNN displays recovering I D  shapes from local 
pinning bars, collinear grouping, edge and region 
filling-in, illusory figure perception and perception of 
apparent brightness as a kind of dynamic phase 
transitions. When some parameters pass some critical 
values, ID shapes are recovered, collinear grouping, 
edge and region filling-in, illusory figures and 
perception of apparent brightness emerge(See Table 1). 
There are finite energy jumps between up and below 
the critical values, so these phase transitions are of first 
order. These behaviors are definitely different from 
usual diffusion or reaction-diffusion, ART models or 
RBF models. Gs: Gaussians. Es: exponentials. 

CEs: Contrast Edges. bc is critical length( distance, 

gap, or radius). Jc is critical initial connection weight. 

Kc is critical applied field. Fig.1 present some 
examples. In all these examples, we set P = N = 0. 

Table I 

Edge filling-in 

Collinear grouping 

ID shape representation 

Illusory figures 

Apparent brightness 

Critical 
parameters 

b c . ~ c . ~ c  

bc,  J ~ ,  K~ 

bc , J c ,  Kc 

be ,  j C , &  

be ,  j C , &  

Inputs 

OGs or OEs at end points 

OGs or OEs at segment ends 

OGS 0' OEs at pinning bar ends 

GsorEsalongCEs,OGsorOEs 
at CE ends 

GsorEsalongCEs,OGsorOEs 
at CE ends 

phase transitions 

~ I ~ ~ , J ~ J ~ , K S K  

b l b c , J 2 J c , K s K  

b  5 bc J  2  J c ,  K 1 K  

b I b c , J 2 J c , K I K  

b I b c , J 2 ~ c , K I K  



value bc, collinear grouping and edge filling-in occur. 
Z = 4 ,  o1=3,  q = I ,  Ic=0.05, 

gl=0.02, g2=0.05.011= 1.501, oI l /ol=4 

h11(0)= I.5gl, h12(0)= 1.5g2, h21(~)=0.5gl 

122 (0) = 0.5 g2 
Jo=O.l,'-'; J0=0.2,': '; Jo=o.3, '- . ' ;  J 0 = 0 . ,  
'0' ; Jo = 0.5, '--'. 
Bottom, Kanizsa map. 6, - -K plot. When the gap b 
passes below some critical value b,, a Kanizsa map 
emerges, a rectangle whiter than the background 
appears to occlude the four discs. Along OA is located 

a set of Gs of size 01. Located at A is an OE of size 
on = 1.50 1, o l,/ol = 4 .  Input is the superposition of 
all these Es and OEs. 
Z = 3 ,  q = I ,  lc=0.05, gl=0.02,g2=0.05, 

hll(0) = 1.5gl, h12(0) = l.5g2, hzl(0) = 0.5gl 

A ~ ~ ( o ) = o . ~ ~ ~ ,  ~ ~ = 0 . 7 . a = 2 , o ~  = I ,  '-'; 
' 9 a=3 ,01=1 .5 ,  0 ;  a=4 ,01=2 , ' - - ' ;  a = 5 , 0 1 = 3 ;  

'- . ' . 
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Fig. 1 LORNN Examples. Top, Collinear grouping and 
edge filling-in. b,- -K plot. Input is two OGs at the 

near ends. When the gap bpasses below some critical 




