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Abstract 

This paper presents a method to estimate and correct 
the positions of an indoor mobile robot. Scene match- 
ing is based on geometric hashing[9, 101. An optimiza- 
tion method[l2] of maximizing cross-correlation of image 
regions is used to estimation correction. We assume that 
the robot is equipped with two or more video cameras, a 
2 0  laser range finder and an odometry system. The 3 0  
CAD model of indoor environment is known. First, the 
indoor environments are remodeled in a form convenient 
for scene matching. Some selected features, which are the 
model edge positions on the horizontal plane of the 2 0  laser 
range finder; are transformed into geometric invariants by 
system calibration and range data fusion. These geometric 
invariants of features are modeled off-line in hashing tables 
according to the proposed basis constraints[l3]. They are 
then used as indices to make scene matching by geometric 
hashing with weighted voting rule. After scene matching, 
the self-localization of mobile robot can be completed by 
coordinate transformation and a least square method. Fur- 
thermore, we use a two-step optimized descent method in a 
number of search directions to make estimation correction. 
Finally, the next position estimation can be made more ac- 
curate and eficient by combining uncertainty analysis[l] 
with geometric hashing. 

1 Introduction 

The mobile robot navigation is often problematic. Sen- 
sors cannot measure the environment precisely or com- 
pletely due to the limitation of model representation and 
the error of real measurements. Robot localization is the 
prerequisite for correct navigation and is also one of the 
most difficult problems in robot navigation. The naviga- 
tion and localization problems are usually divided into two 
distinct classes: reference landmarks guidance[& 61 and 
dead reckoning[l, 21. The latter methods are often com- 
bined with the extended Kalman filter together to navigate 

and locate robot. They often suffer from the problem of un- 
bounded errors in position estimation due to the errors of 
the model and odometry system. On the other hand, the 
former methods depend on the recognition of external ref- 
erence landmarks and maintain the position estimate errors 
within bounded limits. However, it is often computationally 
too complex to allow real-time performance. 

For preventing the errors from being accumulated in 
robot localization, various approaches[l 1,  3, 71 have been 
proposed. Most of them employ visual sensors and internal 
description to represent its environment to perform robot 
localization. But, in practice, some preliminary conditions 
about environments are needed for scene matching[5, 41. 
An efficient method to cut down the search space for match- 
ing is essential. Geometric hashing[lO, 91 is an efficient ap- 
proach for using image features as indices to a database of 
models for scene matching. The major advantages for geo- 
metric hashing in scene matching are its ability to deal with 
partial occlusion and its efficient search strategy. 

In this paper, we presents a new approach for robot lo- 
calization. It consists of estimating and correcting the po- 
sitions of an indoor mobile robot by scene matching based 
on geometric hashing[9, 101 and optimization[ 121 of max- 
imum cross-correlation of image regions. First, the known 
indoor environments are remodeled in hashing tables[l3] 
in a form convenient for scene matching after system cal- 
ibration. Then, scene matching and robot localization are 
performed by geometric hashing and position transforma- 
tion. Furthermore, position correction is carried out by an 
optimal descent method which maximizes cross-correlation 
of image regions between real and estimated positions. Fi- 
nally, the next position estimation can be made more accu- 
rate and efficient by combining uncertainty analysis[l] with 
geometric hashing. 

2 System Calibration and Scene Modeling 

The mobile robot is equipped with two or more video 
cameras, a 2D laser range finder and an odometry system. 
The 3D CAD model of indoor environment is known. The 
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3 Scene Matching and Initial Localization 

Figure 1. The calibration geometry of the camera and the 2D As in the scene modeling, we consider only those scene 

laser range finder on mobile robot. edge points corresponding to the intersections of detected 
vertical edges and the horizontal scanning plane of the 2D 
laser range finder as scene features. Only those vertical 

objective of system calibration is to relate the range data 
measured by a laser range finder to the coordinates relative 
to each video camera. If ~ T V  = (x, y, z ) ~  is the position 
for point p measured in  a camera coordinate system and rL 
is the position of the same point measured in  the laser range 
finder coordinate frame, then, rTv = R ~ L  + ro, where R 
is a 3x3 orthonormal matrix representing the rotation and 
ro = (dl, d 3 ,  dz)T is a translation vector. In our system, 
the range finder is parallel to the optical axis of the lens of 
the cameras, thus, ~ T V  = r~ + r0. We need only to find the 
translation vector between the camera frame and the laser 
range finder frame when the focal length f of the camera is 
calibrated. Assuming a perspective transform model of the 
camera, the ro can be easily found by using known calibra- 
tion points by least square fitting. After system calibration, 
the range data from range finder can be mapped onto each 
gray image as shown in Fig. 1 when the field of view of the 
video camera is covered by that of the laser range finder. 
Hence, for the overlapping part of the two views, the cor- 
respondence between the sampling points of the laser range 
finder and the pixels of the intensity image of the camera 
are established. Thus, we can easily transform image fea- 
ture positions into the coordinates in robot-centered frame 
using the corresponding range data. 

In scene modeling, our objective is to transform the ver- 
tical edge positions of the environments on the horizontal 
plane corresponding to the 2D laser range finder height into 
similarity invariants[ 13, 101. Then, these similarity invari- 
ants will act as the index to the hashing tables[l3]. First, 
we select a pair of ordered feature points Xo and XI as a 
basis by assigning the coordinates (0,O) and (1,O) to them. 
(XI - XO) is normalized as an unit vector. The third point 
XZ with (XZ - XO) as the second orthogonal unit vector 
in  the counter-clockwise direction is uniquely defined. Any 
other point X in the same plane can be represented by this 
basis as: X = Xo + a(X1 - XO) + P(X2 - XO), where, 
( a ,  p) is the similarity coordinates for point X, and they are 
the similarity invariants. That is, T X  = TXo + a(TX1 - 
TXo) + p(TX2 - TXo), when T is a similarity transfor- 
mation. Scene modeling is executed off-line. Each (a, P) 

edges whose lengths over a certain threshold in order to re- 
duce the effect of edge detection error. First, these scene 
features selected are transformed into the coordinates in the 
robot-centered frame as shown in Fig. 1. Then, for each 
selected scene basis, we calculate the geometric invariants 
(a, ,f3) for all other edge points. Each invariant set (a, P) 
will be used as a pointer to cast weighted votes on choosing 
the (model, basis - pair). This process is repeated for all 
(a, /3) sets corresponding to a basis. The neighborhood bins 
of the indexed bin are also checked to account for the effect 
of noise and uncertainty in  the computation. Each hash ta- 
ble entry (model, basis -pair) should get a weighted vote 
when their hash values are within a certain range of the in- 
dexing hash values (cr, P). The weight of the vote depends 
on the difference between two hash values and selected dis- 
tance function. The weight is set to zero when the distance 
is over a certain threshold. 

The highest score (model, basis - pair) is used as a 
candidate match with the scene if it is above a prescribed 
threshold. The unique transformation between the model 
basis and matched scene basis can then be computed from 
the matching result. The match can be verified by check- 
ing whether the transformed edge points lie close to the 
scene feature positions in  robot-centered frame. If no high 
score is counted or the verification fails with the selected 
basis, the matching will be restarted with a different ba- 
sis in the scene. From the result of scene matching, the 
transformation between the observed scene and the known 
model can be established. Consider a point (x, y,  z) in the 
world frame. Its coordinates is known to be (x,, ?I,, z,) in 
the robot-centered frame by scene matching. The location 
(p,, p,) and pose cp of the robot can be easily obtained from 
the equation below[l]. 



4 Estimation Correction 

The localization errors may still be significant, even if 
the scene matching itself is correct. Imaccuracy of the 
detected image feature position will result in these er- 
rors. Hence, in order to improve robot localization accu- 
racy, we propose an optimized descent method to correct 
the estimation. The obiective function is defined as the 
cross-correlation function between the initial scene image (a) (h) 

f (xi, yj, cpo) and estimated scene image f (xi + Ax, yj + Figure 2. (a). 8 correction directions around initial estimate 
Ay, cpo + Acp) by back-projection of the 3D CAD model in the first step correction. (b). The possible correction direc- 
from the initial location and pose estimates. tions in the second step correction. For example, the 6 search 

directions will be (0, -1, -I), (1, -1, O), (0, -1, O), (1,0, O), 

WAX, AY, AP) = 
c0v(Az7 AY, AP) (0,0, -1) and (1,0, -I), if the direction found in the first step 

gouk correction is (1, -1, -1). 

The goal is to maximize the objective function 
R(Ax, Ay, Acp). Correction is done in three steps. The 
first step is to divide the search space around the initial esti- 
mation point into 8 directions (see Fig. 2 (a)) in order to find 
the steepest error decent direction. Here accuracy is sacri- 
ficed for speed of computation. We can take the correction 
step size as a x (Ax, Ay, Acp) in  each correction direction 
(see Fig. 2 (a)), where, a E (0 , l )  is a constant which can 
be adjusted according to experiences, Ax, Ay, Acp repre- 
sent largest estimation errors for x, y, cp respectively. Then, 
the search space in the second step is limited to 6 neigh- 
boring directions around the direction found in the first step 
correction, in order to get a more accurate steepest decent 
direction. In Fig. 2 (b), the 6 search directions will be 
(0, -1, - 1 1 ,  - 1 ,  (0, - , , I , , , , -  and 
(1,0, -I),  if the direction found in the first step correction 
is (1, - 1, - 1). In step three, we can further correct the po- 
sition by bidirectional binary search method in  the direction 
found in step two. In general, we can stop the correction 

after the first step re-estimation, if the initial estimation er- 
ror is small. In fact, the correction algorithm follows the 
common stopping rules, that is, it will not be made or be 
stopped if the objective function for initial estimation or 
re-estimation is large enough than a prescribed threshold 
(i.e. when r(xi ,  yi, pi) is large enough or 11 v r(xk)  11 is 
small enough, the computation will be ended). It can be 
proved[l2] that this optimized descent method is linearly 
convergent. The convergent rate is also quite fast. 

5 Next Position Estimation and Correction 

After initial localization and position correction, the 
robot will move to a next position. We can estimate and 
correct next position by using the odometry data. It means 
that the search space for scene matching based on geomet- 
ric hashing and position correction above can be limited to 
within the range of the uncertainty[]] of the odometry data 
and the mataining of the previous location error. We only 
need to compute the geometric invariants for those scene 
features located within the range of the uncertainty about 
the predicted locations. 

6 Experimental Results and Conclusions 

We had tested the proposed initial localization method in 
real laboratories and simulated environments. Experimen- 
tal results show that the initial position estimation method 
of robot based on geometric hashing and information fusion 
is feasible and reliable. The initial position and angle esti- 
mated errors are within lOcm and 1" respectively without 
using correction. The errors can be reduced within 3cm and 
0.4" respectively after using the correction of step one. Fig. 
3 (a) and (c) give two initial estimated results and (b) and (d) 
the result after estimation correction of the first step. Local- 



igation using model-based reasoning and prediction of un- 
certainties. CVGIPIIU). 56(3):271-329. 1992. . ,. , , 

E. Baumgartner and S. Skaar. An autonomous vision-based 
mobile robot. IEEE Trans. Automat. Control, 39(3):493- 
502, Mar. 1994. 
D.Kang and et. al. Position estimation for mobile robot us- 
ing sensor fusion. In Proc. of the 1995 IEEFJRSJ Int. Con$ 
on Intelligent Robots and Systems, volume 1, pages 271- 
276, Pittsburgh, Pennsylvania, USA, Aug. 1995. 
H. S. Dulimarta and A. K. Jain. Mobile robot localization 
in indoor environment. In Proc. of the Third International 
Conference on Automation, Robotics and Computer Vision, 
pages 22042208, Singapore, Nov. 1994. 

(c) (d) [S] E.Krotkov and et al. Mobile robot localization using a single 
image. In Proc. of IEEE Int. Conf on Robotics and Automa- 

Figure 3. The grey images present the scene from real robot tion, pages 978-983, Washington, DC, 1989. IEEE Com- 

position, the set of white lines superimposed on each image is puter Society, Computer Society Press. 

the edge map derived from the model in the estimated posi- [6] E.Yeh and D. Krigman. Toward selecting and recognizing 
natural landmarks. In Proc. of the 1995 IEEEIRSJ Int. ConJ: 

tion of the mobile robot. (a) and (c) are two initial estima- on Intelligent Robots and Systems, volume 1, pages 47-52, 
tion positions, (b) and (d) are estimation correction results to Pittsburgh, Pennsylvania, USA, Aug. 1995. 
(a) and (c) by the first step correction. (a) e r r 2  = 7.lcm, 171 D. Huttenlocher. M. E. Leventon. and W. J. Rucklidze. 
err-y = 7.7cm, err-cp = 0.95O,R(Ax, Ay, Acp) = 0.850630; 
(b) e r r 2  = 2.156cm,err-y = 2.756c~n,err-cp = 0.40°, 
R(Ax,  Ay, Acp) = 0.923051; (c) e r r 2  = 6.30cm, err-y = 
8.20cm, err-cp = 0.80'  AX, Ay, Acp) = 0.856667; 
(d) e r r 2  = 1.356cm, err-y = 3.254cm,err-cp = 
0.306',  AX, Ay, Acp) = 0.930555. 

ization errors are expected to be smaller in subsequent po- 
sitions when information from odometry data can be used. 

The  original contributions and their importances for this 
work are: (1) the initial estimated position can be corrected 
by steepest descent method, in which, it can be proved that 
the convergence rate is quite fast and is linear[l2] because 
the first step correction is made only in 8 directions of 3D 
parametric space. The  re-estimation accuracy of robot po- 
sition can be greatly improved; (2) the search space for 
scene matching in next position estimation can be greatly 
cut down by use of  the uncertainty analysis of the odome- 
try and geometric hashing with seven constraints; (3) there 
is no limitation of  view point for initial position estimation, 
and it can work in most cases of occlusion as  our scene 
matching is based on geometric hashing and information 
fusion. 
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