
MVA '96 IAPR Workshop on Machine Vision Applications, November. 12-14, 1996, Tokyo, Japan

Parallel Image Processing on
Heterogeneous SIMD-MIMD Machines

Pieter Jonker, Eddy Olk, Koen Volker

Pattern Recognition Section, Faculty of Applied Physics,
Delft University of Technology,

P.O. Box 5046,2600 GA Delft, The Netherlands
pieter@ph.tn.tudelft.nl

Abstract
From a hardware standpoint a heterogeneous

architecture such as an SIMD array coupled
onto a MIMD system, will yield a powerful
solution for real time embedded vision tasks.
From a software standpoint there is a need to
approach this heterogeneous system in a
homogeneous way. We investigated the
feasibility of a uniform parallel programming
approach on a heterogeneous machine. Using
the parallel language CC++ we can express
functional parallelism with constructs like par
and parfor and hide the data parallelism, like
images distributed over SIMD PEs, in CC++
classes. We investigated a way of parallel
programming using arrays of buckets. These
bucket-arrays can be distributed over MIMD
Processing Units, SIMD Processing Elements or
both. A bucket array is hidden in a CC++ class
and can be approached by independent
producer and consumer threads of the parallel
program. We analysed the feasibility and
efficiency of this approach with the constrained
Euclidean Distance Transform while varying the
number of processors from 2 to 128.

1 Introduction
In real-time embedded vision task such as in

robot vision or autonomous car driving,
computing power is necessary on all levels of
operation. These tasks start with a plain image
and while processing, the type of operations
moves from arithmetic to symbolic and the
amount of data to process reduces, until
eventually some decision based on the analysed
data can be made. Parallel computing power is
useful on all levels of operation: Low level or
image processing, Intermediate level or object
understanding, High level or scene
understanding and finally Mission control.

From a hardware standpoint a heterogeneous
architecture, e.g. an SIMD array coupled onto a
MIMD system, will yield a powerful solution.
Generally an SIMD architecture [I], [2], [3] is
suitable to exploit the fine grain parallelism of
the low-level processing operation. Such an
architecture often has also proper interfaces with

the sensor and the host system. E.g. the Smart
Camera [2] couples a 2D sensor array on chip
with a single bit Linear Processor Array, and the
IMAP [I] series of systems is based on a dual
ported memory coupled on chip with an 8 bit
Linear Processor Array and a shift register
section for shifting in video lines during
operation.

Shared memory multi-processor systems
supporting multi-threading, or distributed
memory multi-processor systems (MIMD),
coupled onto the SIMD systems [I21 are quite
able to exploit their coarse grain parallelism for
high level operations. Although for numerous
applications either SIMD or MIMD systems
alone will be sufficient for the task, in many
hierarchical applications with a video speed
data-processing character, a heterogeneous
SIMD-MIMD architecture may provide a more
powerful solution.

From a software standpoint there becomes a
need to approach this heterogeneous system in a
homogeneous way, making the parallel
programming of such a system a agreeable
activity. We investigated the feasibility of a
uniform parallel programming approach on
such a heterogeneous machine [4]. This
approach should be generic, usable on many
heterogeneous architectures.

As our interest is in architecture design and
smooth programming of applications, we
adopted a parallel language from which we
believed it could suit our needs. In the parallel
language Compositional C++ [5] we can express
functional parallelism with constructs like par
and parfor blocks and at the same time hide the
data parallelism like images distributed over
SIMD PEs in CC++ classes.

2 Benchmark algorithm
implementations
As example we use the constrained Euclidean
Distance Transform. Assume that we have a
linear array [6] MIMD or SIMD, in which the
image is column-wise mapped over the P
processors.

Figure 1. A bucket-array distributed over processing units

Various implementations of the cEDT exist: bucket. When the array is distributed over
processors we assume that a bucket of the arrav

I. The pure SIMD method, using the bit-wise entirely resides on a single processor. See figurk
sum of successive dilations of the objects in 1 where a bucket-array with 6 buckets, labelled
the image. This uses a local 3x3 { I , 3, 4, 8..9, rest} is distributed over three
neighbourhood around each pixel. MIMD Processing Units.

2. The Borgefors method which is an
algorithm based on a two pass scan over the
image which uses a recursive 3 x 3
neighbourhood around each pixel [7].

3. A method based on using only the pixels
that are likely to change 181.

Although the latter method of processing
pixels in queues is known for a while [9], we
adopted this sequential approach to a parallel
approach using distributed arrays of buckets
[lo]. These bucket arrays can be distributed
over MIMD Processing Units. SIMD Processing
Elements or both. A bucket array is hidden in a
CC++ class and can be approached by
independent producer and consumer threads of
the parallel program.

A hircket is defined as a data structure (C++:
class) with two access functions (C++: public
functions): a p u t 0 function to put data
elements with certain characteristics into a
bucket and a y e t () function to retrieve an
arbitrary data element from this bucket. This
definition allows different implementations of
the bucket data structure, like FIFO, LIFO or
Linked List. Important is, however, that the user
may not use this implementation knowledge, as
the bucket data structure may in our case be
distributed over a number of processors, which
tilay destroy the implementation (e.g. the FIFO)
character.

Usually such a bucket-array is emptied and
processed, whereupon the processed data items
are put into the array again, possibly in other
buckets. This means that processors only read in
their own buckets, but may send data items over
a network to buckets in another processor. More
than one array can be involved in the processing
and arrays may even reside on other parts of the
heterogeneous architecture. By way of example,
figure 2 shows an image crinkle-wise stored
onto Processing Elements of an SIMD array.

A hl~cker-nrm?, is defined as an array of
buckets where each bucket has a label, a
numeric value or range of values attached to it.
The bucket-array as a whole is considered as a
single data structure with two access-functions,
4imilar to the single bucket: a p u t () function to
put an item in a specific bucket and a g e t ()
function to retrieve an arbitrary item from a
\pecific bucket from the array. The buckets in
the array should have unique non overlapping

$2 A
labels. Consequently in the bucket-array we can Figure 2. Using bucket arrays to
\tore data with similar properties in a single redistribute data items over processors.

35

If the SIMD array allows indirect addressing,
buckets can be implemented on them too, and
even if the array has no long distance network to
route data items to buckets on PEs further away,
research showed that a Nearest Neighbour
network can be programmed to do so [l I] .

When each PE has stored the object pixels that
reside in his part of the distributed image in a
first bucket array, than after e.g. a labelling
procedure all pixels of one object can be stored
into one bucket of a second bucket array. Where
the first array resides on the SIMD system, the
second array may reside on an MIMD system.
This can be profitable for some applications,
where the PUS of the MIMD system can proceed
with the object and scene interpretation and the
SIMD system can grab a new image and pre-
process it. Concluding: programming with
distributed images and bucket arrays in
combination with functional parallel constructs
allow us to program hierarchical applications on
heterogeneous architectures.

3 Analysis of the Euclidean Distance
Transform

To show the feasibility and efficiency of the
homogeneous parallel programming approach
using bucket-arrays, this section describes in
pseudo CC++ the analysis of the constrained
Euclidean Distance Transform (cEDT) while
varying the number of processors from 2 to
128. For this experiment we used CC++ with the
Nexus runtime system [13] mapped onto the
multi-threading facility of Solaris 2.5. The
cEDT starts from the object edges and
propagates contour by contour inward in a wave
front way, writing the distance to the object
border in an output image. We will discuss three
methods of the cEDT: Synchronised,
Unsynchronized and Enhanced
Unsynchronized. In the first method, all
processors perform one propagation step inward
in one iteration. If the processing of the front in
one processor invokes candidates residing in the
neighbouring processor, these candidates are put
into a bucket of the neighbouring processor.
When all processors are ready with the
processing of the current front, the wave is
allowed to propagate one step inward.

The pseudo CC++ code of a synchronised
cEDT program [8], [lo] is:

/ / allocate distributed images
dist-bit-image source(256,256);
dist-grey-image result(256,256);

/ / allocate two distributed bucket-arrays per wind direction
/ / (SO each processor has 2 times 8 buckets in his local memory)
dist-grey-bucket N[2],NE[2],E[2],SE[2],S[2],SW[2],W[2],NW[2];

/ / load source; column-wise map the data-types over processors
/ / initially fill the buckets by scanning the source
parfor(x=O; x<=255; x++) {

for(y=O; y<=255; y++) {
if (source.val(x,y) == OBJECT) {result.val(x,y) = 0)
else {
result.val(x,y) = MAXVAL;
if (source.val(x+l,y) == OBJECT) (W[O].put(x,y,l) 1;
if (source.val(x+l,y+l) == OBJECT) { SW[O] .put(x,y,2) 1;
//etc for all other wind directions of the neighbourhood
1

I
1

/ / perform the wave front propagation in a data parallel way
ready = FALSE; i = 0 ; HorVerCoeff = 3; DiagCoeff = 6; Diff = 10;
parwhile (!ready) {

ready = TRUE;
parwhile(!W[i].empty) {

pixel a = W[i] .get;
if (result.val(a.x, a.y) > a.val {

result.val(a.x, a.y) = a.val;

W[i].put(a.x-1, a.y, a.val + HorVerCoeff);
ready = FALSE

1
1
parwhile(!SW[i].empty) (

pixel a = SW[i] .get;
if (result.val(a.x, a.y) > a.val {

result.val(a.x, a.y) = a.val;
SW[il .put (a.x-1, a.y+l, a.val + DiagCoeff);
S[i].put(a.x, a.y+l, a.val + HorVerCoeff);
W[il.put(a.x-1, a.y, a.val + HorVerCoeff);
ready = FALSE

1
1
/ / etc. for all other wind directions

/ / update coefficients, swap read and write bucket-arrays
HorVerCoeff += 2; DiagCoeff += Diff; Diff += 4; i = mod(2,i+l);

1

The pseudo source code of the
unsynchronised version is almost identical to the
synchronised version. The synchronisation is
realised by using separate read and write bucket-
arrays. If, however, results are put back in the
same (read-write) bucket-array, an
unsynchronised version is obtained. Then all
processors process the full cEDT over the pieces
of object that reside in their own memory. The
processors can proceed until they are blocked
because no more work is generated in their own
piece of the image. Again, if the processing of
the front in one processor invokes candidates
residing in the neighbouring processor, these
candidates are also put into the read-write
buckets of the neighbouring processor. As
candidates generated by neighbours are delayed
with respect to candidates generated by the own
processor there will be a preference for own
candidate points in each processor. To enlarge
this effect, it can even be forced by putting
candidates for neighbouring processors in a
separate neighbour bucket array that is only
emptied into the read-write bucket array when
all processors are ready. These new candidates
are processed until the read-write buckets are
again empty, the neighbour bucket array is
emptied into the read-write bucket array, etc ...

It will be clear that the synchronised method is
more an SIMD approach and the
unsynchronised method more an MIMD
approach. The saving up of neighbour
candidates in a separate bucket-array is also
more in accordance with the DMA block data
transfer between MIMD processors than the
transfer of one candidate at a time. as can more
easily be realised in SIMD systems. Concluding:
In SIMD, with many simple processors,
synchronisation and neighbour communication
is easy. In MIMD, with less more powerful
processors, i t is more beneficial to let the

processors go ahead as far as they can come, as
synchronisation and communication is slower.

Figure 3 on the next page shows the average
memory access overhead plotted against the
number of processors { 2,4, 8 .. 128) for an
enhanced unsynchronised version of the cEDT
on a 256' image. The average memory access
overhead is obtained by taking the total
memory access overhead and divide it by the
number of processors. The total memory access
overhead is the number of excess readstwrites on
all processors in comparison with a single
processor version of the same algorithm. The
figure shows that for this image the enhanced
unsynchronised version of the algorithm is
equally efficient for a modest number of
processors (16) and for a large number of
processors (128). This can be explained by the
fact that for a modest number of processors
most objects remain within the local memory of
the processor and can hence be processed
locally. When the number of processors
increase, more objects cross the processor
boundary and give rise to propagation seeds that
invoke new free running wave fronts that
partially overwrite the values calculated by older
waves. In the high limit case with 256 (SIMD)
PEs this algorithm is almost equal to the
synchronised version of the algorithm, as all
objects always cross the PE boundary.

4 Conclusions
Programming with CC++ and the introduction

of distributed abstract data-types such as images
and bucket-arrays is a method that theoretically
allows to smoothly program heterogeneous
SIMD-MIMD architectures in a single parallel
program. However, research is still necessary on
the port of runtime systems onto such a
heterogeneous architecture.

f Average memory access overhead per processor I

I MIMD
a I P SIMD
! 3

Nr of processors

* Read
overhead per

! processor

1 + Write ' overhead per ~
processor

Figure 3 Average memory overhead per processor from I to 128 processors

Surprisingly enough, a single version of the
cEDT, the enhanced unsynchronised version,
can efficiently run on both an MIMD system
with a modest number of PUS and on an SIMD
system with the number of PEs in the order of
the columns of the image.

5 Acknowledgement
This work was supported by the Commission

of the European Union (LTR 8849)

6 Literature

[I] Fujita Y, Yamashita N, Okazaki S "A 64 Parallel
Integrated Memory Array Processor and a 30 GIPS
Real-Time Vision System" CAMP '95.
Proceedings of the Workshop on Computer
Architectures for Machine Perception (Como, I,
Sept 18-20), IEEE Computer Society Press.

[2] Forschheimer R, Ingelhag P, Jansson C,
"MAPP2200, a second generation smart sensor",
SPIEW Vol 1659, 1992.

[3] D. W. Hammerstrom and D. P. Lulich, Image
Processing using One-Dimensional Processor
Arrays, Proceedings of the IEEE Vol. 84, N. 7,
July 1996 pp. 1005-101 8.

[4] Olk JGE, Jonker PP, "A Programming and
Simulation Model of a SIMD-MIMD Architecture
for Image Processing" CAMP '95. Proceedings of
the Workshop on Computer Architectures for
Machine Perception (Como, I, Sept 18-20), IEEE
Computer Society Press.

[S] Sivilotti PA.G, Carlin PA, "A Tutorial for
CC++nW Compositional Systems Research
Group. Dept. of Comp. Science. Caltech Mail
stop 256-80, Pasedena, CA 91 125, USA.
www.compbio.caltech.edu/CCplusplus.html

Jonker PP, "Why linear arrays are better image
processors", Proceedings of the 12th IAPR
International Conference on Pattern Recognition,
Conference D (Jerusalem, Israel, October 9- 13,
1994), IEEE Computer Society Press, Los
Alamitos, CA, 1994, 334-338.

[7] Borgefors G "Distance Transformations in Digital
Images" Computer Vision, Graphics and Image
Processing 34: 344-37 1, 1986.

[8] Bouts E, "A fast, error free, squared Euclidean
distance transform", Proceedings of VIP '93,
International Conference on Volume Image
Processing (Utrecht, The Netherlands, June 2-4,
1993), Stichting Computer Vision Research
SCVR, Utrecht, 1993, 47-50.

[9] Groen FCA, Foster NJ "A fast algorithm for
cellular logic operations on sequential machines"
Pattern Recognition Letters, vol. 2, no. 5, 1984,
333-338.

[lo] Olk JGE, Jonker PP, "Bucket Processing: a new
paradigm for Image Processing" Accepted for the
journal of Pattern Recognition and Image
Analysis. ISSN 1054-661 8

[I I] Baglietto P. Maresca M, Migliardi M, Zingirian
N, de Lescure B, GuCrin B, Colai'tis MJ. "Eprit
BRA Project 8849 SMIMP Deliverable Bn23: The
Implementation of the Image Processing Layer
Part I" January 1996. [pieter@)ph.tn.tudelft.nl]

[I21 "Parsytec CC series hardware documentation",
"Embedded Parix software documentation"
Parsytec GmbH, Auf der Huels 183, D-52068
Aachen, Germany. www.parsytec.de

[I31 Foster I, Kesselman C, Tuecke S. "The Nexus
parallel runtime system" Argonne National
Laboratory, Argonne, Ill. 60439,1994.
www.mcs.anl.gov/nexus

