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Abstract 

In the context of the analysis of remotely sensed 
data the question arises of how to analyze large 
volumes of data. In the specific case of agricultural 
fields in flat areas these fields can often be modeled 
in terms of geometric primitives such as triangles 
and rectangles. In this case the options are classical 
i.e. bottom-up, starting at the pixel level and 
resulting in a segmented, labeled image or top- 
down, starting with a model for image partitioning 
and resulting in a minimum cost estimation of 
shape hypotheses with corresponding parameters. 
We report on an investigation of the search effort 
needed for resolving a simplified segmentation 
problem of partitioning an image into two 
segments. Experimental factors are edge length and 
overlap of monospectral probability distributions of 
two classes. 
The method for quantifying the complexity of an 
approach is to determine the number of possible 
solutions at each stage in the process and the 
convergence rate towards a final solution of the 
segmentation and labeling problem. 

1 Introduction 

In image analysis of remotely sensed data the 
usual approach is bottom-up in the sense that the 
analysis starts at the pixel level and the end result is 
a segmented and labeled set of image samples. 
Increasingly, this is followed by conversion to 
vector (polygon) format based on the assumption 
that the edges between objects are piece-wise 
linear. 
We have argued [I, 2, 31 that in applications of 
Remote Sensing (RS) to man-made objects such as 
agricultural fields there is sufficient knowledge 
about the shape of the image segments to allow 
top-down image analysis. Our pure top-down 
analysis starts with a set of shape hypotheses such 
as the object is-a {triangle, rectangle, circle- 

segment] or a combination of these according to the 
application (set operators on these primitives). The 
roie of the RS data is to evaluate the current set of 
hypotheses and shape parameters and to modify this 
set until a minimum cost instantiation is found. 
Counter arguments to our "pure" top-down 
approach have centered on the assumed complexity 
of the shape of agricultural fields and on the large 
overlap amongst the clusters of multispectral data 
between clusters of different classes. 
In this paper we argue that if approximation of 2- 
dimensional object shapes by polygons is accepted 
then any object shape in the same context can be 
approximated by a union of triangles. Adjacent 
triangles of different objects share a straight "edge"; 
therefore, locally the problem of hypothesis 
generation and testing is reduced to the hypothesis 
of samples of class A and class B in a region of 
interest with a linear decision function for image 
sample membership. The linear membership 
decision function has two parameters for position 
and orientation (parl, par2) plus an edge length 
which defines the size of the region of interest. 
We compare the top-down and bottom-up 
approaches for the simple case of a linear edge with 
experimental variables: overlap of probability 
density functions and edge length. Complexity is 
defined in terms of the number of possible solutions 
in a problem space and the number of operations 
required to reduce the number of solutions to the 
minimum cost solution(s). 
The process of image analysis is mapped onto a 
problem of navigation through a split/merge tree. 

1.1 Definitions 

Monospectral image: Rad(xi,yi), ~i:=0..2~- 1, 
yi:=0..2"-1 is a set of Dirac samples of photon 
counts at image sample position (xi,yi) scaled to 
0..255 (N = 1, 2, 3...). 

Membership decision function: 
FuncDecideClass(parl,xi,yi) = xi-parl, for which 
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the parameter to be estimated is the parl (edge 
position parameter) for known orientation; with 

IF FDC < 0 THEN Class = A 
ELSE Class = B. 

A hypothesis map Hyp(Class,xi,yi) is a map of 
Dirac samples of the membership decision function 
on the domain class = {A,B} (Boolean). 

An evidence map Evi(Class,xi,yi) is a mapping 
from Rad(xi,yi) to the likelihood 
P(ClasslRad(xi,yi)) under the assumption of equal 
priors P(Class) in the region of interest. 

Cost(Hyp(k,xi,yi), Evi(l,xi,yi)) = 
Hyp(k=A,xi,yi) x Evi(l=BIRad(xi,yi)) + 
Hyp(k=B,xi,yi) x Evi(l=Alrad(xi,yi)), this the per 
sample expected cost of mislabeling (sum of the 
off-diagonal elements of the confusion matrix by 
the use of a unit cost matrix of Dfl. 1 .OO for every 
completely misclassified image samples). 

Cost(Hyp(k), Evi(l)) = sum-over(xi,yi) of 
Cost(Hyp(k,xi,yi), Evi(l,xi,yi)), over the region of 
interest and eventually over the complete image. 
The essence of our method is that we minimize the 
cost of mislabeling per object. This contrasts with 
the standard method of minimum error or maximum 
likelihood per sample (pixel). 

derivative) comprising the subset of map 
Hyp(Class,xi,yi) where the hypothesis changed. 
To test the complexity of the top-down analysis in 
the case of small edge lengths we have performed 
the following experiments: Vary the expected 
minimum cost of confusion due to overlaps from 
Dfl. 0.0 to Dfl. 0.5 per sample in steps of 0.05. Vary 
the edge length 2N, N:= 1..8 step 1. Figure 2 shows 
an example of parameter estimation where N=6 and 
expected minimum cost is equal Dfl. 0.45 per 
image sample (pixel). 

3 The complexity of bottom-up image 
analysis 

In this experiment we assume bottom-up 
meaning, per pixel maximum likelihood 
classification followed by merging of 4-adjacent 
evidence map elements until two map-segments 
remain. The generality of the approach is not 
severely compromised by limiting the experiments 
to a single vertical edge. The parameter to be 
estimated is the shift-x parameter. 
The theoretical complexity is considerably higher at 
the start than with the top-down method. Initiallv. 
there are 2 ~ ( 2 ~ ~ )  p ~ s ~ i b i e  solution maps with -2 

2 The complexity of top-down edge classes compared to max. 22N solution parameters 
detection (e.g. in case of N=6, the number of possible maps is 

equal to 2 ~ ( 2 * ~ )  = 2A(22x4) = 24096). The goal state has 

Complexity in terms of the number of possible 
solutions depends here on the resolution of the 2- 
dimensional parameter space which is related to the 
resolution of the image and the corresponding 
hypothesis map Hyp(Class,xi,yi). The minimal 
change in the hypothesis map with a change of 
parameter must be one sample but, in practice the 
change in the hypothesis map must be of the order 
2N-1 indicating an "area" of the solution space: 
minimal Cost(par1, par2) of the order 2N+1. 
Figure 1 shows a hypothesis map, an image and the 
graph of the cost as a function of the distance 
parameter (parl), which has a minimum at parl=32 
and par2=0. The search history is overlaid on the 
parameter space (problem space) and lines of 
constant cost are drawn for each evaluation of the 
cost function. Each independent evaluation reduces 
the dimension of the problem space by one. 
For a given dimension of parameter space (1 in this 
case), a very large region of interest, a known 
decision function and a known P(Rad I Class), it is 
possible to find the optimal hypothesis map (as a 
function of optimal parameters) in dim+l steps [4]. 
In our case the top-down complexity is defined by 
the dim+l=l+l=2 operations needed for the 
optimal bisection of a region of interest. Each 
evaluation of Cost(Hyp(k), Evi(1)) requires 2'" 
conditional additions (over the complete image) if 
no use is made of the limited area (partial 

two segments. 
In practice, the feasibility of the bottom-up 
approach depends crucially on the effects of merge 
operations. The factor we expected to be of the 
most importance is the reduction of the number of 
segments by merging based on 4-adjacency and 
maximum common boundary length weighted by 
the number of pixels in each segment [5]. 
The computational complexity of merging is of the 
order of the number of neighbours in the region 
adjacency graph plus an overhead for editing the 
region adjacency graph. Initially, there are 4 ~ ( 2 ~ ~ )  
neighbours to be considered. 
When the expected minimum-cost=O/sample (no 
overlap of probability distributions of two classes) 
then the result will be two segments from which the 
decision function's parameters can be estimated. 
When the expected minimum-cost=0.5/sample 
(complete overlap of the probability distributions) 
then the merging will progress at random with slow 
convergence and a meaningless result. 
We experimented with a single edge: Vary the 
expected minimum cost of confusion due to 
overlaps from 0.0 to 0.5 per sample in steps of 0.05. 
Vary the edge length 2N, N:= 2..8 step 1. 
Table 1 reports the average reduction rate of the 
number of segments for consecutive iterations of 
the merge algorithms. 
Figure 3 shows initial segmentation for a case of 
expected minimum cost is equal Dfl. 0.45/sample 



and segmentation into 2 segments, reached after 
136 iterations of the merge operation. Figure 4 
shows the result of the application of iterative 
region-merging to the output of the pixel based 
maximum likelihood classification. 

4 Conclusions 

Under the conditions of the experiment the top- 
down method always has a lower theoretical 
complexity than the bottom-up method as the 
complexity of searching a parameter space for a 
specific model is always less than that of searching 
one solution map in the set of all possible maps. 
The computational complexity (number of 
operations to solution) varies strongly with the 
expected minimum cost(parameters). The more the 
probability densities of radiometry given class 
overlap, the more obvious the advantage of the top- 
down method, as achieving of the optimal result 
hardly depends on the overlap of the probability 
density functions. In the worst case an exhaustive 
search of parameter space is required. 
The generation and evaluation of an evidence map 
and some three hypothesis maps need not require 
more computer time than maximum likelihood per 
pixel classification, followed by one pass 
segmentation. 
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Figure l(a) shows: 
- a hypothesis map for parl=16 (shift-x) and par2=0; 

Grey = Class A, Black = Class B. 
- the image of size 22N samples, where N=6 (64x64 samples), 

and the expected minimum cost is equal Dfl. 0.10 per image 
sample (pixel). 

Figure l(b): 
- the graph of the cost as a function of  par l ,  which has a 

minimum at par l=32 with the corresponding 



cost=435.324. The corresponding cost for the 
hypothesis map in (a) is 1234. The number of 
calculations of Cost (parameter=shift edge) is 2N+1 (in 
this case 65) indicating the "area" of the solution space 
as shown in the graph. 

Figure 3: initial segmentation for a case of expe 
minimum cost is equal Dfl. 0.45 per sample with 
initial segments. Segmentation into 2 segments, real 
after 136 iterations of the merge operation. 
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Figure 2 shows: an example of parameter estimation 
where N=6 (64x64 samples) and expected minimum cost 
is equal Dfl. 0.45 per sample. 
(a) the image, 
(b) the hypothesis map for parl=32, 
(c) the graph of the Cost(parl=shift edge) which has a 

minimum at par l=32. 

Figure 4: the result of applying iterative region-merging to 
the output of the pixel based maximum likelihood 
classification. 

Table 1: the average reduction rate of the number of 
segments for consecutive iterations of the merge 
algorithms and the number of possible solutions at each 
stage. The process is repeated and yields a hierarchy of 
partition, with a stopping point being two segments. 




