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Abstract 

Hot punctual target identification and tracking must 
be usual tasks for many vision applications employed in 
defense systems, smart cars, or 3D scanning systems. 
Unfortunately, the signal-to-noise ratio is often low and 
the acquisition frame rate must be high. "Classical" 
vision systems cannot manage all specific constraints. 
We propose a new, adapted VLSI architecture for focal 
plane array, able to detect and to track numerous hot 
punctual targets at signal-to-noise ratios near to 0 dB. 
We validate the processing algorithm by performing a 
global simulation of the system and we find the best 
algorithm parameters with respect to qualitative criteria 
like target path detection rate and false detection 
probability. 

became "invisible" for one frame (see the worst case in 
fig. 1 and the associated signal in fig. 2). When a small 
target crosses over a blind region, if we consider our 
typical parameters, the average signal attenuation is 
approximately equal to 5- 15 dB. 
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Fig. 1. The worst and the best case 

when a target cross a pixel 
1 Introduction 

The real time identification and recognition of hot 
punctual targets, at high acquisition rate like 5000- 
10000 images per second and at signal-to-noise ratio 
close to 0 dB is a difficult task for any classical 
processing chain like CCD camera, numerical 
conversion followed by DSP processing [I]. The design 
of a compact system that could realize all these tasks 
inside one monolithic VLSI circuit has brought us to 
the study and to the realization of a focal plane array 
with a specialized architecture, called OPTICS ("One 
Pixel Target Infrared Camera System"). 

OPTICS has to detect punctual targets on a slowly 
variable background (in time and space). Drawn to 
scale of the acquisition, targets are considered as 
attached to the background but the camera undergoes 
continually a complex motion as compared to the scene. 
Typically, the camera spins at 10 Hz on a slowly 
moving axis. Thus, a target never remains too long on 
the same pixel but its relative speed limits his motion to 
a jump between two neighbor pixels (in a %connected 
neighborhood). 

The 2D implementation of a focal plane array 
generates "blind" gaps around each sensitive area. Our 
implementation needs about 25 % of each cell' surface 
for signal processing and communication. Thus, targets 
with a diameter lower than inter-pixel "blind" gap can 

Fig. 2. Signal received by a pixel diagonally 
crossed by a target (relative sizes: 

pixel active area = 0.8x0.8, target diameter = 0) 

An other drawback due to technological spreads of 
components is the variable sensitivity between pixels. 
Sensitivity variations generate a noise type called 
Spatial Static Noise (SSN). We appreciate its value 
between 5 and 10 percents of the received signal peak. 
It is more important than temporal noise due to the 
quantum nature of photoconversion. Computer 
simulations shows us that for frame rates lower than 
10000 Hz the temporal noise is negligible with respect 
of SSN. 
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2 Processing Algorithm 

Processing algorithm must be easy to design, not 
very expensive in silicone surface (only 120 transistors 
per cell). fast enough (to process at least 5000 frames 
per second), and locally distributed (to minimize 
communication overloading). It has three levels: 
acquisition and SSN cleaning, complex filtering and 
binary decision. Our algorithm takes into account the 
unity of the spatio-temporal target path in the image 
flow. Acted treatments maximize the detection 
probability of a continuous path in the pixels space, 
even at low signal-to-noise ratios. At each frame, we 
will use the present and the last binary maps to "guess" 
the next target positions. 

SSN cleaning: 
In our VLSI implementation each sensor 

photocurrent depends linearly on received light 
intensity. Similar architectures are studied in [2] and 
131. 

~ ~ E C E I L )  = Io(ij) + P( i j )Ecd i j , t )  (1) 

where 10 is the dark current, 
p is the light sensitivity of the sensor, 
Em is the received light intensity. 

Fig. 3. Technological spread of photosensors characteristics 

Practically, the SSN is generated by I. and P 
variances between pixels (fig. 3). Using a linear 
correction for each photocurrent one can find the 
"correct" photocurrent 1; if he can guess two 
correction parameters per pixel: 

Static corrections like trimming methods [4] are 
unusable here because of temperature variations. A 
dynamic approach can use the smoothness of the scene 
and tries to minimize the global error energy E with 
respect to a and b: 

studied a 3-by-3 pixels optimization and a single pixel 
optimization. For the first one we have: 

where the sum through time takes into account the last 
N frames (due to environmental conditions, N is 
approximately equal to 2000 frames). 

Much simpler, the single pixel optimization suppose 
that statistically, each pixel has approximately the same 
minimal and mean photocurrent. This is more likely for 
neighbor pixels. As we will see later. the identification 
algorithm uses only the local information in a 3-by-3 
neighborhood around each pixel. 

and so the normalized photocurrent: 

Our plausible supposition was verified by 
simulation. An initial variance of I. and P equal to 10% 
can be reduced by this way at only 2.5%. In order to 
keep a dynamical behavior of the SSN cleaning 
procedure, mean and minimum values are computed 
using recurrent formula: 
IMEm (t) = a M E A N 1 H E . m  (t - 1) + (1- a M E A N  )IC (t) (8,9) 

Due to the nature of the scene, we avoid using of 
local maximum values to normalize the photocurrents. 
When a hot punctual target crosses a pixel it modifies 
1- while Im and Im are practically unchanged. 
This creates a strong asymmetry between the pixel and 
its neighbors, leading to eventual false detection. 

Complex filtering estimates the global chances that 
a hot punctual target is projected on a given pixel (ij). 
It includes the following components: temporal 
filtering to sharp pixel transition, spatial filtering to 
detect an isolated pixel hotter then its neighborhood 
and path prediction to take into account the spatio- 
temporal unity of target path on focal plane array. 

3 Temporal filtering: ST 
We studied first and second order temporal filtering, 
but the second order seems to be too expensive for our 
VLSI implementation (so az is actually equal to 0) 

where N(k.1) means the 8 direct neighbor pixels of , J = , - 1; - 1  - 2 I J (10) 
pixel (i j). in the 3-by-3 neighborhood. 

3 Spatial nonlinear filtering: Ss 
Unfortunately, this may be too expensive. Local Easy to implement, the linear filtering can take a 

optimizations are much easier to implement. We pointed corner of an hot object as punctual target: 



Hard nonlinear filtering is more adapted to punctual 
target. Unfortunately, it is affected by the SSN around 
the real target. 

Ss(i, j,t) = I:(,, j,t) - max (l;(k,l,t)) 
~JEN(I.J) 

(12) 

A good compromise can be found by comparing the 
pisel value with the generalized mean of its neighbors: 

We found a good approximation of (13) as a 
combination of (1 1) and (12): 

Ss (1, j, t) = I;(i,j,t) -aM . k J ~ ~ j ) ( ~ ; ( k , l , t ) )  

+ Prediction map: SM(i, j, t) 

Initially equal to zero, this map holds an evaluation, 
for any pixel, of its chances to detect a target in the 
nest frame. Typically, around a moving target, one 
must find positive values on pixels in front of the target 
and negative values behind the target. The anisotropy 
requested by this kind of prediction is expensive in 
silicon surface. We find an interesting decomposition of 
this prediction function in two isotropic functions 
(much easy to design): each binary detection of a target 
will add a 3-by-3 Gaussian mask m on the map and, 
symmetrically, a lost of target will subtract the same 
Gaussian mask from the prediction map. Thus, our 
algorithm needs a feed-back between the binary map 
and the prediction level. Figure 4 shows the result of a 
quick transition on the prediction map (lost of the 
target and new detection on the next pixel). To clean 
the map we introduce a "forgetting" factor m, less but 
near to 1. 
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Fig. 4. 3-by-3 prediction mask and 
quick transition effects on predlctlon map 

where T(i j,t) is the binary decision map contents. 

Finally, complex filtered signal is provided by the 
weighted sum of its three components: 

Binary decision: 
We used a Bayesian-like decision about the eventual 

target presence on each pixel. It must maximize the 
target path detection rate (TPDR) and minimize the 
false detection probability (see section 4 for a complete 
definition of this qualitative criteria). Practically, the 
target detection is made by a Winner-Takes-All 
competition between pixels in a 3-by-3 neighborhood, 
validated by a global threshold. Thus, the winning pixel 
filtered value must exceeds all his 8 direct neighbors 
and the global threshold HwA. 

1 if S, (i, j, t) > S, (k, I, t) k. 1 E N(i, j) 

and S,(i, j, t) > H,,, (17) 
0 otherwise 

3 Focal Plan Array Architecture 

The main part of signal processing architecture uses 
analog cells, due to circuit size and processing speed 
constraints. Proposed architecture (figure 5) includes 
three analog levels: a dynamic correction level to clean 
the SSN, a complex filtering level (temporal filtering, 
spatial nonlinear filtering and target path prediction) 
and a "Winner Take All" level that, using a dynamic 
threshold, takes a binary decision on the existence of 
the target in a local vicinity. Analog architecture uses 
less than 70 transistors per pixel. Digital maps follow 
the targets evolution and anticipate their paths by 
sensitizing pixels ahead of the detected target and by 
blinding pixels behind the target. Target detection and 
memorization, and 110 interface are realized with 
numerical operators. 

Fig. 5. Focal plane array architecture (block level) 

The 110 user-interface is optimize for fast rcading of 
sparse binary matrix. It uses a fast-scan digital 
asynchronous architecture to provide targets positions 
and the real-time evolution of digital maps; this will be 
reported in another paper. 

4 Preliminary Results 

Computer simulation allows us to optimize SSN 
cleaning parameters, filtering components weights, 
"forgetting" factor, and prediction mask coefficients. 

To measure expected performance of the system 
(during simulation and validation steps) we have 



defined t\vo qualitative criteria: the first concerns the 
target path detection rate (TPDR must be equal to 100 
% for a perfect detection), and the second concerns the 
false detection probability (FDP) for any pixel in the 
focal plane arrav (to be detected as target in absence of 
an effective target). During simulation we compare 
output results with simulated target paths and we 
optimize internal parameters with respect to TPDR and 
FDP (fig. 6). Simulated with a typical scene parameters 
set. after optimization, OPTICS reaches a high rate of 
target path detection equal to 97% (fig. 7) while the 
false detection probability is less than 10" . 
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Fig. 6. TPDR and FDP towards WTA threshold 
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Fig. 7. 1:eed-back prediction increases 
target path detection rate 

Optimized parameters like a?, CLF. a+, a,  MEAN, 

and m are frizzed in VLSI design whilc the others like 
Hwr,,. as or cr.1. can be modified dynamically through 
110 interface. Figure 8 shows the image processing 
chain while tracking seven hot punctual targets. 

(c) ( (1 )  
Fig. 8. Image I'rocessing Chain: Noisy Image (a), 

Fuzzy Prediction Map (b), Nonlinear Spatial 
Filtering Result (c) and Binary Detection Map (d)  

5. Conclusions 

This project uses a specific electronic approach to 
satisfy precise speed, quality, and reliability needs. The 
analog and digital operators mix is an objective 
necessity. Analog cells allow the increase of the local 
processing speed and the density of integration. This 
allows us to envisage a final architecture size like 128 
by 128 pixels, using about one hundred transistors per 
cell. 
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