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Abstract automatically updated during the matching process, 

This paper describes a real-time tracking system 
which detects an object entering into the field of view 
of camera and executes the tracking of the detected 
object by controlling a servo device so that a target 
object always lies at the center of an image frame. In 
order to detect and track a moving object, we basically 
apply a model matching strategy. We allow a model to 
vary dynamically during the tracking process so that it 
can assimilate the variations of shape and intensities of 
a target object. We also utilize Kalman filter so that a 
tracking history can be encoded into state parameters of 
Kalman filter. The estimated state parameters of 
Kalman filter will then be used to reduce search areas 
for model matching and to control a servo device. 

1. Introduction 

In this paper, we describe a real-time tracking system 
which detects an object entering into the field of view 
of a camera and executes tracking of the detected object 
by controlling a servo device in such a way that a target 
always lies at the center of an image frame. In order to 
detect and keep tracking of a moving object, we 
basically apply a model matching strategy (3-5). We 
allow the model of a target to vary dynamically during 
tracking process so that it can assimilate variations of 
shape and intensities of a target object. We also encode 
a tracking history into state parameters of a Kalman 
filter. The estimated state parameters will then be used 
to reduce search areas for model matching and to 
control a servo device. 

Fig.1 shows an overall configuration of our tracking 
system. A detecting module detects the entrance of a 
moving object into a FOV(Field of View) by analyzing 
two consecutive input images. It also forms an initial 
model of a target object. A tracking module keeps 
tracking of a target object by controlling a servo device. 
A servo device needs motion information of a target by 
which it may adjust its pan and tilt angles. This 
information is obtained by model matching with the 
help of a Kalman filter. A model of a target is 

2. Detection of moving object 

The detection process is basically performed by 
comparing two successive images captured by a fixed 
camera and identifying differing areas of one against 
another image@,'). Then, a question is how adjacent two 
successive images must be. If a time interval between 
two successive images is too short compared to the 
movement of an object, these two images may not show 
clear differences and the detection process may fail to 
identify movement itself. On the other hand, if the time 
interval is too long, the detection process may fail to 
catch up an entering object. We solve this problem by 
employing temporal resampling. The next question is 
which areas of chosen images we have to compare in 
which way. A detection period should be short enough 
not to miss an entering object during the period. So, we 
examine only a small portion of an entire image by 
spatial resampling. 

Fig1 . Overall configuration 

We first divide an entire image into small cells, and 
select some evenly distributed cells. And we compare 
the cells of two successive images to identify differing 
areas by a dissimilarity measure ~ i s ~ i m i t ' ) .  If the value 
of DisSimil is less than some predefined threshold TH, , 
we call the corresponding cell as a stationary cell. 
Otherwise, the corresponding cell is called a 
nonstationary cell. When the number of nonstationary 



cells is greater than some predefined threshold TH2,  we 
presume that some object has entered into the FOV of a 
camera. 

Once the detection of entering object is made, we 
generate an initial model. We define a model of a target 
object as a feature vector which represents spectral 
characteristics of the selected nonstationary area. The 
enclosing rectangle of the selected area has constituent 
cells. Some of them may be stationary, while all the 
others are nonstationary. We compute an average and 
standard deviation of gray values in each nonstationary 
cell. We then list up the calculated values to form a 
feature vector of m(j,j), where (i,j) denotes the index of 
a constituent cell. Stationary cells of the enclosing 
rectangle do not belong to a target object. 

3. Estimation of motion parameters 

In this section, we describe how to utilize a Kalman 
filter so that a tracking history is encoded into state 
parameters of a Kalman filter. The estimated parameters 
will then be used to reduce the searching scope for 
model matching and to control a servo device. A 
Kalman filter provides sequential and recursive 
algorithm for optimal LMV(Linear Minimum Variance 
of error) estimation for system states('.'). We assume 
that a state model is linear and is defined by the 
following equation. 

~ ( t )  = @(At) ~ ( t  - At) + ~ ( t  - At) 
(1) 

where x(t) denotes system states at time instant o f t  , 
@(At) denotes a state transition matrix during a period 
of At, and w(t) denotes an estimation error. In this paper, 
we express system states as an 8-dimensional vector 
which represents the positional change of a target object 
per unit time interval and the size of a target object. (2) 
shows such system states and an estimation error, 
respectively. 

We represent the positional change of a target object 
as displacement of the centroid of a target object per 
unit time interval, and the size as horizontal and vertical 
lengths of the enclosing rectangle of a target object. 
That is, Ax and Ay of (2) denote displacement of the 
centroid of a target object in the x-axis and y-axis 
respectively, and xs and ys of (2) denote horizontal and 
vertical length of the enclosing rectangle respectively. 
The notation of superbar denotes a derivative with 
respect to t .  We also assume that the trajectory of a 
target object varies with a constant acceleration and the 

size of a target object varies linearly. We then have a 
state transition matrix as in (3). 

'1 0 0 OAtO 0 0 '  
0 1 0 0 0 A t 0 0  
O O l O O O A t O  
0 0 0 1 0 0 0 A t  
0 0 0 0 1 0 0 0  
0 0 0 0 0 1 0 0  
0 0 0 0 0 0 1 0  

\ 0 0 0 0 0 0 0 1  

Kalman filter algorithm tries to estimate system states 
based on a set of measurements. We assume linear 
relation between system states and a set of 
measurements as in (4). 

where y(t) denotes a set of measurements, H(t) 
denotes an observation matrix, and v(t) denotes 
measurement errors. We measure the positional change 
and size of a target object at each time instant to get 
values ofy( t ) .  y(t) and H(t) are then formed as in (5). 

Once we have defined a system model and 
measurement model, we can now apply recursive 
Kalman filter algorithm to obtain LMV estimates of 
motion parameters. The recursive Kalman filter 
algorithm consists of three phases of operations; 
initialization, state estimation, and measurement 
update('). 

The phase of state estimation determines a priori 
LMV estimate and its error covariance matrix for 
current state based on previous state estimate and error 
covariance. (6) formalizes this phase. 

-- x (t) =@(At)  X ( t - A t )  



P -  (1) = O(At) P(t - At) 07'(dt) + Q(t - At) (6) which will occur during the period of At. 

where 2-  (t) denotes a priori estimate for system 
states at the time instant o f t  based on measurements of 

y (0), y ( I )  , ..., y(t - At ), and X -  (t - A t )  denotes 
optimal estimate for system states at the time instant o f t  
- At based on measurements of y(O), y(l) , ..., y(t - At). 

We will use the values of X -  (t) to reduce searching 
scope for model matching and determine appropriate 
angles of a servo device. 

The phase of measurement update combines the 
estimated information with new measurements to 
provide LMV estimate and its error covariance matrix 
for current state. (7) formalizes this phase. 

K(t) = P -  (t) ~ ' ( t )  (H(t) P -  (t) ~ ~ ( t )  + R(t))-' 

P(t) = (I - K(t) H(t)) P -  (t) 
3? (t) = X -  (t) + K(t) (y(t) - H(t) X -  (t) ) (7) 

where the term K(t) (y( t )  - H(t) X -  (t) ) provides 

optimal LMV estimate for X (t) - 2- (t) based on 
7 (0. That is, it represents optimal correction of the 

error incurred from the predicted estimate X -  (t) of 
X (t). We perform this correction process with 
measurements on the positional change and size of a 
target object which are to be computed through 
matching process. 

4. Servo control and model matching 

After an initial model has been generated, the system 
will go into tracking stage. The tracking stage can be 
divided into two types of substages; servo control and 
model matching. The former is to adjust the FOV of a 
camera in such a way that a target always lies at the 
center of an image frame, and the latter is to detect a 
target in the image captured by the adjusted camera. 

Once we detected a target in the frame taken at t - At 
instant, we apply Kalman filter algorithm and obtain 

state estimate X -  (t). The estimated values h( t )  and 

Ay(t) of X -  (t) will then be converted to pan and tilt 
angles by which a servo device is to be rotated. As an 
illustration of such operation, let us consider Fig.2. 

In Fig.2, ( x ,  , y, ) denotes the origin of image frame 
coordinates, ( x ,  , y ,  ) denotes center coordinates of a 
target in the frame taken at t - At instant, and h( t )  and 
Ay(t) denote the estimated amount of displacement 

Fig.2. Example of Ax([) and Ay(t) contained in X -  (t) 

The second substage of tracking process matches a 
current model against the input image captured by an 
adjusted camera and finds out a target object. This 
substage also updates the model for matching at the 
next frame, since the shape and size of a target may 
vary as the target moves on. Kalman filter algorithm 
provides estimated size of a target as well. We use the 
estimated size xs(t) and ys(t) to build a window within 
the input image. A target is to be searched for within the 
window. We set the width and height of the window one 
and half the values of the estimated xs(t) and ys(t). 

We perform model matching across the window in 
two stages; coarse matching and fine matching. The 
stage of coarse matching speeds up matching process by 
examining only the small portion of the window. The 
stage of fine matching identifies a target object and it 
also updates the feature vector of a model. 

5. Experimental results and conclusions 

We evaluated the suggested system under realistic 
tracking conditions. This section presents some 
experimental results which illustrate the operational 
characteristics of the proposed system. We 
implemented the suggested system with IBM-PC 
equipped with DT-2867 Frame grabber. Input images 
are captured with a CCTV camera mounted on PAN- 
TILT unit which can change the FOV of a camera by 
6" per second. The captured images are 640 by 480 in 
size with 8 bits per pixel. 

Fig.3 shows captured images during the course of 
tracking process, together with overlaid templates over 
which new models were formed. In Fig.3, the dotted 
white rectangle denotes the window predicted by a 



Kalman filter, over which a target is to be searched for. 
The undotted white rectangle denotes the enclosing 
rectangle of a target object extracted through model 
matching. The white mark denotes the position to which 
the center of a frame needs to be adjusted at the next 
time instant. This position was also obtained by the 
prediction of a Kalman filter. We can notice that the 
system positions a target object around the center of the 
frame, even though other objects move across the target 
object. We can also confirm that the shape and size of 
the template, over which a new model is to be formed, 
varies as an object moves on. 

( c )  
Fig.3. Example of tracking process 

model. We confirmed through this experiment that our 
system can keep tracking of a target which moves not 
faster than 0.96 m/sec and not closer than distance of 10 
meters from a camera. We also confirmed that the 
predicted values of a Kalman filter are very useful in 
reducing searching scope for model matching and in 
controlling a servo device. 
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In our implementation environment, the total 
processing time was around 0.09 second which is a little 
bit less than one period of processing cycle of At,,,, . 
One half of the processing time was spent in matching a 




