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ABSTRACT 

An important area of automatic industrial inspection that 
has been largely overlooked by the recent wave of research 
in machine vision applications is the detection of defects 
in textured surfaces. In this paper, we present different 
algorithms for the detection of surface abnormalities both 
in the chromatic and structural properties of random tex- 
tures. We present very promising results on the detection of 
cracks, blobs, and chromatic defects in ceramic and granite 
tiles. 

1 INTRODUCTION 

In problems of automatic surface inspection, one often 
has to handle material surfaces which have the appearance 
colour texture information. The inspection problem is then 
to detect any deviations from the normal texture by auto- 
matic image analysis techniques. The abnormalities can 
be divided into two basic categories: blob-like, and thin 
structures, i.e. cracks. For blob-like or regional defects in 
colour texture, faults can be caused by either chromatic 
abnormalities, structural abnormalities, or both simulta- 
neously. It is therefore of paramount importance that any 
texture representation method must exhibit sensitivity to  
both (chromatic and structural) types of pertnrbations. 

Early texture studies divided textures into two main 
types: micro and macro textures. To describe or model 
them, there are many methodologies developed and a dc- 
tailed survey can be found in a paper by Haralick [I]. Many 
existing texture descriptors are based on the view that tex- 
ture is a regular pattern composed of repeated primitive el- 
ements. Unfortunately, most natural images do not gener- 
ally show such regularity, although, in most cases, one can 
immediately identify different textured areas. Some proto- 
typical examples of irregular textures which are known as 
random macro textures, are ceramic, marble and granite 
images, which are of particular concern in this paper. As a 
matter of fact, the placement of the primitives within these 
is purely random and highly irregular. 

In terms of image texture representation, very few algo- 
rithms exploit chromatic properties of texture. Tan et al. 
[2] proposed a method using eight Discrete Cosine Trans- 
form (DCT) texture features extracted from each of the 
three RGB colour bands for classifying colour textures. 
This method is designed to  be sensitive to  local variations. 
However, for the case of colour macrotextures, it requires 
a very large macro window to  compute the DCT texture 
features. It is also very computationally intensive. In an- 

other approach [3] eight Discrete Cosine Transform tex- 
ture features are computed on the intensity image only and 
they are augmented by six colour features derived from the 
colour histogram. In this method, the 3D colour histogram 
was approximated by three 1D histograms and the colour 
information embedded in these histograms was used for 
the colour features. Unfortunately, histograms only convey 
coarse global information. Hence, the colour information 
is not fully exploited by this method. In addition, more 
than three distinct colours are generally found in many 
image textures, suggesting that the data distribution may 
be multi-modal. Using three 1D histograms to  approxi- 
mate the 3D histogram is therefore inappropriate. Caelli 
et al. [4] recently proposed a method which estimates colour 
texture features individually from three spectral channels 
by using multi-scale isotropic filters. The filters extract the 
first order statistics from the source colour histogram and 
second order statistics, amplitudes and orientations from 
the filtered response histograms in each channel separately. 
However, for the case of random macro colour textures, 
the orientation information is not significant. Thus, the 
extracted colour texture features do not adequately repre- 
sent such textures. 

Motivated by these considerations, we are presenting a 
novel algorithm to tackle the problem of surface inspection 
on random macro colour textures, in particular, granite 
images. The basic idea of this algorithm is to  represent 
the random macro colour texture by means of colour tex- 
ture features. These features are extracted from various 
chromatic classes associated with the colour image texture, 
rather than from the RGB bands as in Caelli's method (4).  

The other category of defects which are also difficult to 
detect are small pin-holes, and short and long-length sur- 
face cracks on randomly textured ceramic and granite sur- 
faces. There has been almost no report of any investigation 
of this kind. Since cracks or scratches usually occupy only 
1% or less of the surface of an object, local methods for 
the analysis of image texture are important to  capture the 
local information content. 

One of the most sophisticated approaches to texture is 
that based on the Wigner distribution where the attributes 
computed for each pixel encapsulate both the local spec- 
tral and phase properties of the local Fourier transform in a 
unique real spectrum. Thus, they achieve a spatial/spatial 
frequency representation of the texture pattern. This ap- 
proach is based on neurophysiological studies that support 
the view that representation in the human vision system 
involves a Fourier like decomposition of the visual stimulus 
into spatial frequency components [5]. These studies had a 
seminal influence on the development of spectral represen- 



tation of texture in the form of either the energy of the out- 
puts of a bank of filter tuned to different spatial frequency 
bands (6, 71 or the power spectrum itself. The Wigner 
distribution provides a spectral representation of texture 
which enjoys the highest resolution both in the spatial and 
spatial frequency domain. As a result, it is very sensitive to 
localised deviations from nominal texture properties such 
as those caused by cracks and pin-hole defects. For this 
reason it has been adopted and developed to provide a tool 
for the detection of such defects. We do not use any chro- 
matic information in crack defect detection since short or 
long cracks are well characterised by their structural fea- 
tures. In any case the chromatic properties of cracks are 
irrelevant. 

Next in section 2 ,  we start by considering the Wigner 
distribution approach and associated post-processing opti- 
mal line filtering. In section 3  the colour texture defect 
detection algorithm is described including colour cluster- 
ing, morphological smoothing, and structural analysis. Fi- 
nally, results and conclusions are given in Sections 4  and 5 
respectively. 

2 WIGNER DISTRIBUTION 
REPRESENTATION 

The short time Fourier transform is a commonly used 
method with which one can compute the frequency con- 
tent of an image in the vicinity of a pixel by placing a 
window around it and taking the Fourier transform of the 
windowed function. The problem with this approach is that 
the Fourier transform produced this way is a complex array 
and usually only its magnitude (ie the spectrum) is used to 
associate a set of frequency domain features to each pixel. 
The Wigner distribution on the other hand, produces a real 
val~led set of features which encapsulate both the magni- 
tudc and thr phase information that characterise a signal 
in the frequency domain. This is achieved by creating first 
a symmetric function from the signal and taking its Fourier 
transform which, as a consequence, is real. 

The Wigner distribution was initially defined as a co- 
joint time and time frequency representation of an infinite 
one dimensional signal (8, 91. Its two dimensional extension 
suggested in [ l o ]  is defined by: 

where f ( x ,  y) is a two dimensional image function, f ' ( x ,  y) 
its complex conjugate, < and C are the angular frequencies 
in the x  and y directions respectively and a,  P are some 
spatial displacement parameters. 

In the above expression the image function f ( x , y )  is 
treated like a continuous function. In reality of course, we 
have a sampled version of it from which the continuous 

function must be reconstructed: 

where A x  and A y  are the sampling intervals. The discrete 
Wigner distribution then can be shown to be: 

In the above expression u and v  are frequencies. 
Since the limits of integration in the definition of the 

Wigner distribution are infinite, it is almost uncomputable. 
Accordingly, Martin et al. [ l l ]  introduced a computable 
approximation to the Wigner distribution that they called 
the pseudo-Wigner distribution, the 2 D  extension of which 
is defined as: 

X U  X V  
P W D ( x ,  Y, p, p) 

where 
u , v = O , f l , . . ,  f N ,  

P = 2 N + 1 ,  

and H ( a ,  p )  and g(r ,  s) are windowing functions and ( 2 N  f 
1 )  x ( 2 N  + 1 )  and ( 2 M  + 1) x ( 2 M  + 1 )  are the sizes of the 
corresponding windows. It is desirable to choose window- 
ing functions to eliminate or reduce the undesirable effects 
of aliasing and Gibbs phenomenon due to sampling and 
truncation. A windowing function in the Fourier domain 
should be a reasonable approximation of an impulse (delta) 
function with compromise between making the width of 
the delta function as small as possible and the amplitude 
of the ripple side lobes as small as possible. A prolate 
spheroidal wave function which is optimal in spectral en- 
ergy within a specific bandwidth is the best candidate (121. 
Kaiser [13] has shown that in the one dimensional case, 
the prolate spheroidal wave function may be well approx- 
imated by the modified Bessel function of zero order, ap- 
propriately scaled. The Bessel function approximation is 
nearly optimal and much easier to compute than the pro- 
late spheroidal wave function. 

Henceforth, following [14 ] ,  the H ( a ,  B )  windowing func- 
tion in the pseudo-Wigner distribution is chosen to be a 
Kaiser window and is defined as : 



where 

and - N  5 k,I< N 

with (2N + 1) x (2N + 1) being the size of the kernel which 
is zero outside this region. y is the parameter that governs 
the trade off between the main lobe width and the side lobe 
ripple amplitude of the spectrum. Typical values of y are 
in the range 4 5 y 5 9. 

The other windowing function g(r, s )  appearing in equa- 
tion (4) is for allowing local averaging. Any averaging will 
smooth the signal and may make the crack we wish to  de- 
tect blurred and undetectable. Thus, in this paper this 
function was not used a t  all. In order to  stick to  the proper 
formalism, we may say that we chose a rectangular data 
window defined as: 

of features needed to  be computed such that the covariance 
matrix in the feature space was invertible. 

Let us denote by f the local feature vector associated 
with each pixel of the defect-free image and C the covari- 
ance matrix of their distribution. We can diagonalize C by 
writing : 

C = UAUT (8) 

where U is the matrix made up from the eigenvectors of C 
used as columns, UT is its transpose and A is a diagonal 
matrix of the eigenvalues of C arranged in the descending 
order of their magnitude along its diagonal. Suppose now 
that we retain only the m largest eigenvalues and we set th_e 
rest to  zero. The corresponding transformation matrix U 
then will consist of the corresponding m eige?vectors only. 

We can thus define new feature vectors f assigned to 
each pixel by using the linear transformation matrix UT : 

where T and s are integers, bij is Kronecker's delta and 
i, j are also integers that take values such as to  identify 
positions within the smoothing window of size (2M + 1) x 
(2M + 1) around pixel (r, s) .  

2.1 Texture Crack Detection Algorithm 

The crack detector that  we propose is able to  detect 
cracks on random or regular textural backgrounds. Rasi- 
cally, it consists of three parts: 

System training for the learning of the underlying tex- 
ture. 

Analysis of the test image and calculation of the Ma- 
halanobis distance map. 

Post-processing to  isolate the crack pixels. 

In the first stage, the pseudo-Wigner spectrum at each 
pixel position of a defect-free image is calculated. Each 
local Wigner spectrum is normalised to have unit dc spec- 
tral component. In other words, the absolute magnitudes 
of the spectral components are not used as in many other 
cases (e.g. [15, 161). This is because it was noticed that 
the information needed for the detection of cracks was best 
encapsulated by the general shape of the spectrum and not 
necessarily by the exact value of each Wigner spectral com- 
ponent. The Wigner distribution is a real function and the 
phase information is implicitly encapsulated in the negative 
parts of the spectrum. Therefore, we do not lose any phase 
information after normalisation. The normalised ampli- 
tude of each spectral component is then considered as our 
local texture feature and only half of those features need to 
be retained due to  symmetry. Generally, defective pixels 
can be isolated in the feature space by using some sort of 
optimal distance measure from the distribution of the pix- 
els of the underlying texture. The Mahalanobis distance 
seems to  be appropriate. However, when the covariance 
matrix of the distribution was computed, it was found to  
be singular, an indication that the features used were not 
independent. It became obvious, therefore, that a new set 

The new feature vector f consists of m components only 
which are uncorrelated with each other and encapsulate the 
most important features of the distribution. In the second 
stage, the local texture features were computed from the 
test image as described in the training phase. In the new 
feature space with the reduced dimensionality, we can use 
the Mahalanobis distance to  measure the distance of each 
pixel of the test image from the cluster of pixels of the train- 
ing image. The new covariance matrix of the distribution 
is the truncated matrix A. Thus we can create a residual 
map of the test image which contains the Mahalanobis dis- 
tance of each pixel from the distribution of the defect-free 
image in the feature space. Let d be a Mahalanobis dis- 
tance function defined. Then for each pixel location [i, j ] .  
we have 

where Mi is the transformed mean feature vector of the un- 
derlying texture. Clearly, pixels with large distance mea- 
sures are potential crack pixels. One could simply thresh- 
old the distance map to isolate the defective pixels. This, 
however does not create a very clean output and in some 
applications, one may require to  identify the crack lines 
accurately. Henceforth, some post processing is necessary 
and this is described in the next subsection. 

2.2 Optimal Line Filtering 

The post-processing method we used on the residual map 
is the optimal line filtering approach. Given the assump- 
tions that cracks are mostly generated due to sudden exer- 
tion of external force or material fatigue, the crack features 
embedded in the Mahalanobis map should have a dom- 
inant orientation, that is, horizontal or vertical, instead 
of becoming spiral in shape. We can then convolve the 
Mahalanobis distance map with a line filter in the direc- 
tion normal to  the basic orientation of the linear features. 
The orientation is estimated by comparing variances of re- 
sponses computed from the distance map in the horizontal 
and vertical directions. Obviously, the direction that has 



the smallest variance is the basic orientation of the linear 
features. 

The line filter that  we used [17] is a one dimensional di- 
rectional filter which detects lines. All linear features with 
widths within a factor of 2 of the width of the feature for 
which the filter is optimal can be detected. The filter pa- 
rameters are designed optimally by modelling the intensity 
profile of the linear features in the Mahalanobis distance 
map and maximising a composite performance criterion 
[17]. When a local maximum in the output is detected, a 
hypothesis is generated that  there is a linear feature passing 
through it. Since the filter is developed around the assump- 
tion that the linear feature we want to  detect is adequately 
described by a certain model, we know what sort of out- 
put is expected from the filter when a true linear feature 
is encountered. Thus, when the hypothesis of the presence 
of a linear feature is generated, a template of the expected 
filter response is invoked and a matching procedure is ap- 
plied similar to a ,y2 test. If the value of the residual of 
this template matching is below a certain threshold, a lin- 
ear feature is marked. The strength of the linear feature 
marked is calculated as the difference between the response 
of the filter at  the position of the central pixel minus the 
a.verage response of the filter at  two neighbouring positions 
symmetrical about the centre where the expected response 
is known to have another local extremum of the opposite 
sign from the central one. This number is considered to be 
the contrast of the linear feature. Subsequently hysteresis 
thresholding is applied to  these contrast values. 

The filters as described in [17] are one dimensional, ie 
they are only 1 pixel wide. In some cases the result could 
he improved if some smoothing was applied in the direc- 
tion orthogonal to the direction of convolution, before the 
ronvolution with the line filter. The line filter effectively 
smooths the signal (in the direction of convolution) and at  
t,lle same time estimates its second derivative in the same 
direction. It was considered, therefore, as most appropri- 
ate to use for just smoothing the line filter twice integrated. 
Such a filter would be expected to be "optimal" for smooth- 
ing, in the sense that it would preserve the linear feature to  
be detected as best as possible. Thus, what we effectively 
do is to  convolve the image with a two dimensional filter 
h(y) f ( x )  (with f (x )  being the line detection filter and h(x) 
the function f (x)  integrated twice) which is separable and 
thus very efficient. The smoothing filter h(x) is given by: 

for - d > x > - w  

and 

Parameters 

LI 
Lz 
L3 

Table 1:  Values for features of varies sharpness s 

I Parameters I s = 5  

for 0 2 x > - d  

3 = 2  

-153.6941 
-180.2321 
1337.822 

s = 6  1 s = 7  1 

The values of the constants L1-L4 are chosen so that the 
two branches of the solution match smoothly at  x = -d  
and the filter vanishes smoothly at  x = - I U  where IU is its 
half size. All other parameters that appear in the above 
expression are as defined in [17] and it is beyond the scope 
of the present work to  go into more detail about them. 
The only parameters that are not discussed in [17] are C1- 
L4 and we give their values here in Table 1 for features of 
varied sharpness (expressed by parameter s) and calculated 
for feature half-width d = 1 and 1 = 10. This filter should 
be scaled and used the same way as the line detection filter 
described in (171 

I LI 1 -106.0458 1 -135.4477 1 -119.2798 1 

3 CHROMATO-STRUCTURAL 
APPROACH TO DEFECT DETECTION 

s = 3 

-81.3208 
-43.82824 

716.452 

In this section a hybrid chromato-str11ct11ra1 approach to 
colour texture representation is proposed where structural 
colour texture features are extracted from variol~s chro- 
matic classes associated with the colour image texture. It 
combines colour clustering with a binary blob image anal- 
ysis to  capture the relevant information content of the tex- 
tures. 

The colour texture defect detection algorithm consists 
essentially of two stages: the first stage (training stage) is 
where the system is trained on textured images or image 
regions which are void of defects. The second stage is where 
the system is analysing the given image for the presence 
of any defects, as well as detecting their locations in the 
image. 

As we are interested in chromatic macrotexture, rather 
than microtexture, in the second stage of our approach, we 
aim to  extract structural texture information from various 
chromatic categories by measuring the structural statistics 
on blobs of similar colour so that  fine local chromatic vari- 
ations are ignored. This can be achieved by classifying the 
image pixels into chromatic categories defined during the 
training stage. For each chromatic category, we identify 
all the pixels that can be confidently associated with it 

3 = 4  

-132.7542 
4.411499 
1092.654 



by setting a single bit binary flag to  unity. Thus for each 
class, we obtain a binary image of pixels that have been 
assigned to  it. An additional binary image is generated for 
the reject class which contains all the pixels that have not 
been accepted by any of the chromatic categories. Thus, 
we transform the colour macrotexture image into a stack 
of binary blob images. As these will invariably be noisy, 
they will be subjected to  morphological smoothing before 
any structural analysis (blob size, shape and distribution) 
can be carried out. 

In our approach, we have developed a new colour clus- 
tering method, described later, to  define chromatic cate- 
gories. Each chromatic category Wk is associated with one 
or more sub classes. Each sub class is defined by its inferred 
mean pi and the probability P(q) which allows us to in- 
voke the Bayes minimum error rule for pixel classification 
in the colour inspection stage. The binary images of blobs 
of different colour are then processed in order to  calculate 
their area, size, elongatedness and spatial distribution as 
reflected by the inter-blob distance. It is assumed that 
these attributes are distributed normally with the inferred 
mean p,, and covariance matrix C,, . 

3.1 Colour  Clus ter ing  Scheme  

Segmenting or clustering a colour image into different 
classes in the absence of a priori information is still a fun- 
damental issue in image processing. The main difficulty is 
that the model and its parameters are unknown and need 
to  be computed from the given image before segmentation. 
Moreover, the clustering results are used for subsequent 
processing in our colour texture defect detection algorithm. 
Therefore, the entities of interest in the colour image tex- 
ture not only need to  be well extracted, but also have to be 
well represented by the individual classes. These stringent 
requirements make the clustering process very difficult. 

Several techniques have been proposed in order to tackle 
these problems [18, 19, 201. Here we adopt a clustering ap- 
proach. The accuracy of pixel data representation in terms 
of clusters depends a great deal on the number of clusters 
generated as shown in figure (1) for a typical granite texture 
image. Motivated by this consideration, a novel colour clus- 
tering algorithm is developed which essentially consists of 
two stages: initial clustering and perceptual merging. Gen- 
erally speaking, we segregate the colour image texture into 
fine or small clusters in the RGB space, and merge them ac- 
cording to  some meaningful property, i.e. their perceptual 
colour similarity. With appropriate merging strategy and 
termination criterion, a super cluster or class will be repre- 
sented by a group of sub-clusters. In other words, the data 
are represented by a group of sub-clusters associated with 
the same class label. Less smoothing and better class rep- 
resentation of the true data distribution will be the result. 
Prior knowledge regarding the actual number of clusters 
that must be formed is no more necessary in this case. 

we perform the initial clustering in the RGB space. Since 
RGR are the principle colours digitized during image acqui- 
sition, noise should be uniformly distributed. The resulting 
clusters formed in RGB space should be more accurate and 
less sensitive to  noise. We assume that the number of ini- 

tial clusters that we choose is sufficiently large to give good 
data representation and capture fine chromatic variation. 
Once the initial clusters are formed in the RGB space, we 
have to  merge them in some meaningful way. Inter-cluster 
distance in the RGB space does not convey any physical 
information on colour difference. More explicitly, the dis- 
tance between any two points in the RGR space does not 
give the measure of colour difference between two colour 
perceptions. Since merging of clusters based on the colour 
difference is the best approach, we transform all the dataof 
the clusters into a uniform CIE colour space and retain the 
class labels obtained in the RGB space. Once the trans- 
formation is carried out, we merge clusters by means of 
measuring the colour difference between two cluster means. 
One should note that by forming the clusters first in the 
RGB space and merging them according to  their cluster 
means in the uniform colour space, we are in fact elimi- 
nating the non-linear noise effect on clusters. Details of 
initial clustering and perceptual merging are given in the 
next two subsections. 

3.2 Init ial  Clus ter ing  

The technique used for initial clustering is the histogram 
based K-means algorithm, with a very large number of clus- 
ters to  avoid grouping together pixels which in the percep- 
tually uniform space would be distinct. In the case of the 
three dimensional space of colour images, this histogram 
based approach is advantageous only if it is combined with 
a coding scheme that does not require any memory allo- 
cation for empty histogram bins. We have adopted the 
technique advocated in [21]. The basic idea is to  project 
the 3-D histogram into 1-D using for each pixel a unique 
number computed from its RGB values as follows: 

Unique number[z] = R[i] + G[i] * L + R[i] * L~ (13) 

where i identifies the pixel and L is the maximum gray level 
value of the colour image which is normally 255. To min- 
imise the number of memory storage accesses, a B-tree data 
structure [22] is implemented to store the 1-D histogram. 
The idea of the B-tree data structure is to  construct a bal- 
anced multi-way tree. With each access during the multi- 
point reassignment, a block that has several records will be 
accessed and from this block, a multi-way decision is made 
about which block to  access next. Notice that this 1D pro- 
jection is only a storage saving trick and no information is 
lost. 

As a poor initial partition could result in unrepresenta- 
tive clustering we adopt an efficient initialisation procedure 
for highly correlated data. The idea behind the advocated 
initialisation scheme is based on the recognition that the 
data distribution can be characterised by its principal di- 
rections and the eigenvalues which are the variances of the 
distribution along the corresponding axes. Principal com- 
ponent analysis of several granite images showed that their 
distribution has the shape of an elongated pancake with its 
longest axis in the direction of the RGB line, ie. the line 
along which we measure grayness. In our application, 25 
seeds are chosen, a number that is found to  be snfficient to 
capture all the fine chromatic variations. Figure 2 shows 



schematically such a distribution and the location of the 
25 seed points used t o  partition the distribution into 25 
clnsters. Once the clnster centres are determined an itera- 
tive remsignment of pixels is carried out  until a stable da ta  
pa.rtition is reached. 

3.3 Perceptual Merging 

The initial clustering stage produces a large number of 
small clusters many of which could be perceptually identi- 
cal. To identify the  perceptually similar clusters, we trans- 
form the d a t a  into the CIE colour space. This step is 
necessary because, as  we mentioned earlier, the Euclidean 
distance in RGB space does not reflect perceptual simi- 
larity. The  transformed d a t a  keep their respective class 
labels obtained in the initial clustering. By measuring the 
colour difference between all pairs of clusters represented 
by their respective cluster means, we merge clusters with 
colour difference which is not greater than some predeter- 
mined threshold. When any two clusters are merged, a 
snper cluster label is assign t o  the merged clusters. The 
new cluster mean pi for the  super cluster is calculated by: 

where A,/I; and Ni, Nj are the cluster means and the num- 
ber of pixels in cluster i t h  and j f h  respectively. This up- 
dating tends t o  create more compact cluster associations 
which is consistent with the fact tha t  Euclidean distance 
in the perceptual colour space reflects perceptual colour 
discrimination. The  merging process is iterative and is re- 
peated several times until no more clusters exists which are 
closer than the predetermined threshold. At the end of the  
merging process, every sub-cluster will be associated with 
a super cluster label. 

3.4 Morphological Smoothing 

One should note tha t  both during the training and the 
identification stage of our algorithm, a colour image will 
be decomposed into a stack of binary images by means 
of chromatic clustering or  classification. This process is 
based solely upon the  feature space distribution and does 
not take into consideration the spatial distribution of pix- 
els. Therefore, the resulting binary images may have small 
holes and individual loose pixels which may create the im- 
pression of a filamentary texture, contrary to  the blob-like 
texture humans perceive when they see these images. To 
eliminate them, each binary image is subjected to  morpho- 
logical smoothing. Two secondary morphological opera- 
tions are used, tha t  is opening and closing. Openinggener- 
ally smoothes the contour of a region, breaks narrow isth- 
muses and eliminates thin protrusions. Closing also tends 
to  smooth sections of a region bnt ,  as  opposed t o  opening, 
it generally fuses narrow breaks and long thin gulfs, elim- 
inates small holes, and fills gaps in the region. Hence, the 
closing of the opening operation (A o B) B is performed 
on each chromatic category or binary image [23]. 
(A o B) is the opening operation defined as : 

(A B) $ B = dilate[ errode(A, B ) ,  B ] (15) 

(A R )  is the closing operation defined as : 

where A is the binary blob image, B is a simple filled 3x3 
mask, -B is the same as B in our case and @,@ are the 
Minkowski addition and subtraction respectively. Once the 
morphological operation is completed, the  binary images 
of blobs will be free of noise and the  blobs will be better 
defined. 

3.5 Structural Texture Analysis 

Each blob in a binary image is characterised by four 
numbers: 

Area fa. 

Perimeter fractality f,. 

Elongatedness f,. 

Spatial information f, . 

The area is the number of pixels associated with the blob. 
The perimeter fractality of a blob is defined by : 

where A and P are the area and perimeter of thc blob 
respectively. When the area of two blobs is the same, the 
one with the more ragged perimeter will have a s~na l l r r  j, 
value. Also, if two blobs have the same perimeter length, 
the one with the less smooth perimeter will have the smaller 
value off,.  

Elongatedness is defined in terms of the  moments of the 
blob. Let us denote with M l l ,  M2,  and Ma, the second 
order moments of the blob. Then,  in a coordinate system 
rotated by an angle 8 

with respect to  the image coordinate system and centered 
a t  the  centroid of the  blob, the mixed second order moment 
Mi ,  vanishes. The  remaining two second order moments 
Mio and MA2 can then be used t o  characterise the elongat- 
edness of the  blob. 

When the blob is of circular shape, the elongatedness fea- 
ture is zero. 

All the above features described so far d o  not convey any 
spatial information regarding how densely distributed each 
type of colour blobs is. The  motivation for calcnlating the 
spatial features arises from the fact tha t  if the same type 
of colour blobs are clustered together, human vision will 
also perceive this region as a defect. On the contrary, if 
the colour blobs are uniformly scattered, only colour blobs 
with abnormal shape or  size will be considered as defects. 
Hence, we must include some spatial information in the 
blob features in order t o  quantify how closely the blobs 
are distributed within a certain specific region. We first 



compute the centroid of each blob and then for each blob 
we compute the spatial feature f, given by: 

where m and ( are the number and area of the blobs that 
fall within the local region of size WxW around the blob 
under consideration. To avoid having a biased feature, the 
area of the central blob is not included in the calculation 
of the spatial feature. However, some types of colour blobs 
may come in many sizes as shown in Figure 3. Therefore, 
it is reasonable t o  estimate the size of the local region in 
units of the radius of the central blob, given by: 

where A and T are the area and the effective radius of the 
blob respectively and K is some weighting factor. 

In our defect detection algorithm, structure statistics de- 
fined in the training phase are extracted from these at- 
tributes on the assumption that these attributes are dis- 
tributed normally with the inferred mean p,, and covari- 
ance matrix XI,. 

3.6 Defect Identification 

In the final stage, we divide the defect identification 
into two main stages, ie. colour inspection and blob 
defect identification. We assumed that the class condi- 
tional probability density for each chromatic category Wk 
(Wk = {q; i = 1, ..n)) is constituted by a multi-modal 
function. Each subcluster of a chromatic category has a 
mean c; and the a prior probability P(w;) for a pixel to  
belong to  it is equal to  N , / N .  These multi-modal models 
are designed during the training phase and are represented 
by the chromatic statistics obtained in the colour blobs seg- 
regation stage. The colour inspection based on this design 
can then be carried out using the Bayes minimum error 
rule discriminant function given by: 

where f i s  the RGB feature vector of each pixel in the test 
image. The Bayes decision rule classifies a pixel to  the 
chromatic category Wh if and only if 

J j (A  > Ji(fi  where w, E Wh , V(i  # j )  (23) 

and assigns a binary flag to  each pixel in the corresponding 
chromatic category. Therefore, a stack of binary blob im- 
ages is formed. Pixels with values of Ji for all classes Wk 
below a certain threshold are rejected and considered as 
colour defects. These pixels form the colour defects output 
of the algorithm and they are not considered further in the 
process. 

Those pixels that have been classified into the prede- 
termined chromatic categories are then sent to  the second 
stage of classification. Each binary image in the stack is 
smoothed by the morphological operators as it was done 

during the training phme. The resulting binary blob im- 
ages are then subjected to  structural texture analysis. The 
structural features of each colour blob in each binary blob 
image are computed. Subsequently, blob defects in each 
chromatic category or each binary blob image are iden- 
tified by means of the Mahalanobis distance discriminant 
function. 

where g' = [fa,  f,, f,, f,IT is the feature vector of a colour 
blob and cf, and XI, are the inferred structure statistics 
obtained in the training phase for the specific chromatic 
category Wh. Note that at  this stage blob classification 
is carried out instead of pixel classification and thus blobs 
with abnormal structural features are identified as defects. 

4 EXPERIMENTAL RESULTS 

The tiles used in our experiments were ceramic, granite, 
and marble of a size of a t  least 200 x 200mm. In the images 
shown in this paper, some defects may not be easily visible. 
In most crack defect images a dilation operation is carried 
out to enhance the results. 

Figures 4 and 5 show pin-hole and small crack defects 
on lightly textured tiles. We used a modified version of the 
line filter to  detect these spot-like faults without any other 
pre-processing. 

In Figures 6, 7, 8, and 9, we present four images with 
surface cracks; the first of these was superimposed and con- 
sists of a single pixel wide crack running almost across the 
entire length of the tile. All of these cracks were detected 
by using the modified pseudo Wigner distribution and op- 
timal line filter post-processing (displaying the capability 
of the filter in detecting lines of various widths). We ex- 
perimented with various window sizes for the windowing 
function of the Wigner distribution and found a 7x7 size 
provides the best discrimination of defects. The line filter 
was tuned on a corresponding defective tile before applica- 
tion during the test stage. 

Figure 10 shows texture abnormalities detected using the 
chromato-structural defect detection algorithm. As an ex- 
ample, the image in 10(a) is split into 11 distinct colour 
categories and following morphology and Mahalanobis dis- 
tance comparison of blob characteristics, the fault in 10(b) 
is reliably detected. Thus, our algorithm seems to be very 
robust and picks up the abnormalities accurately. 

In order to show the power of the chromatic discrimina- 
tion in our algorithm we next show an untypical result in 
Figure 10(a) which contains a spot-like colour abnormality 
besides the obvious large blob defect. The encircled spot 
defect in FigurelO(b) was detected a t  the time of colour 
category classification when it was rejected as a colour not 
identified during the training process. Figure 10(c) shows 
a 5 x 5 zoomed region of the blue-band of the image around 
this defect to  demonstrate the sensitivity of the algorithm. 
Finally, Figure 11 shows four tiles with varying sizes of 
structural and chromatic defects whose borders are out- 
lined. 



5 CONCLUSIONS 

Automatic visual inspection of colour textures plays a 
crucial role in machine vision applications. In this paper 
we have shown two approaches for the  detection of surface 
deferts in colour textured images. These were the pseudo- 
Wigner distribution and the chromato-structural defect de- 
tection approach. 

Initially we described the  pseudo-Wigner distribution 
whirh provides a cojoint spatial and spatial frequency rep- 
resentation of the texture surface in this application. For 
crack detection, it was found that  the local crack infor- 
mation was best encapsulated in the general shape of the 
spectrum. Also, we discarded the local averaging window 
of the classic pseudo-Wigner distribution as it was fonnd 
to  smooth and blur the crack signals we wished t o  detect. 
Next, we described the  crack detection algorithm consist- 
ing of an initial training stage and a testing stage. During 
the training stage the statistical distribution of the Wigner 
spectra of the underlying texture was computed using the 
psentlo-Wigner formulae. In the testing stage the resid- 
ual map of the Mahalanobis distance of the local spectrum 
from that  distribution was calculated followed by post- 
processing with the  optimal line filter. Furthermore, the 
optimal line filter was described in some detail. This was 
used independently and as a post-processing stage t o  our 
other techniques. 

Furthermore, we have introduced a unique framework t o  
tackle the problem of defect detection in random textured 
images based on their colour and texture information. In 
order t o  segregate the colour image texture to  various chro- 
matic classes, a new colour clustering scheme which uses 
histogram based clustering and perceptual merging based 
on human colour perception was developed. Initially, we 
segregate homogeneous colour regions from a given texture 
image by means of K-means clustering with multi-point 
reassignment strategy, an efficient initialisation procedure 
and coding srheme designed to  improve performance and 
reduce computational complexity respectively. This is fol- 
lowed by ~ e r c e p t u a l  merging which allows more accurate 
statistical models to  be inferred from the clusters and does 
not require a przorz information regarding the number of 
colonrs. This is a very important feature in our applica- 
tion since it is very difficult t o  guess the number of colorlrs 
associated with each image. In fact, if the colour space 
that  we used for perceptual merging is perfectly uniform, 
then we are certain tha t  our proposed algorithm will per- 
form excellently for all colour images. Unfortunately, in 
the existing colourimetry field, both International colour 
standards recommended by the CIE only closely approxi- 
mate uniform colour spaces. For some colours, the distance 
between them are still not according t o  the human colour 
perception. For example, gray colours. Finally, the result- 
ing multiple images are then subjected t o  morphological 
filtering and globally represented by means of texture de- 
scriptors. 

We also showed the results of the application of both 
approaches and can conclude tha t  both perform extremely 
well. The psrudo-Wigner distribution for rrack detection is 
computationally expensive and will benefit considerably if 

it were t o  be tailored for a more powerful platform such as 
a network of parallel processors. Work on this is currently 
a t  hand. 

More specific t o  the  problem of ceramic, granite and 
marble inspection, it is hoped tha t  the considerable ad- 
vance achieved in overall production through the automa- 
tion of tile inspection will eliminate an estimated 70.80% 
customer complaint rate regarding product quality[24]. 
Furthermore, the spin-offs of the  findings of this project 
can have an impact in other industrial fields presenting 
similar problems; for instance in the  textile industry for 
defect detection, loose threads detection, and colour shad- 
ing classification on fabrics, the agro-food industry for vi- 
sual analysis of crops such as apples/oranges/pears/etc, the 
wood industry for texture and colour classification, and in 
a number of other industries. 
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Figure 1: (a) Data are poorly represented by clusters A and B. 
(b) Super clusters A and B are formed by many sub-clusters. 
This gives a better data representation than (a). 

Figure 2: Schematic distribution of pixels in RGB space and 
initialization points for the clustering algorithm. 

Figure 3: This figure illustrates that the local region used for 
calculating the spatial feature is dependent on the blob size. 

(a) Carrara textured tile (b) Hole defects 

Figure 4: 



(a) Carrara textured tile (b) Crack and 'pot de- 
fects 

Figure 5: 

(a) 1)ontzettt ceramtr 
textured tile with super- (b) Crack defect 

imposed crack 

Figure 6: 

(a) Real crack on granite 
tile 

(b) Crack defect 

Figure 7: 

(a) Heal crack on granite 

tile 
(b) Crack defect 

Figure 8: 

(a) Real crack on n~arhlr 
tile (b) Blob defects 

Figure 9: 

(a) Donizetti textured 
tile 

(b) Blob and encircled ($) Drfect 
colour defect p~xel and 

neighbour- 
hood in the 
blue band 

Figure 10: 

Figure 11: Fo~tr  ( ~ ~ ; I I I I ~ ( .  ~ I I I C I  111itrl>11*) t t l , . ,  ; III<I Il~<>ir c h r o m a t ~  
structural defects 




