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Abstract 

In this paper we propose an approach for detection 
of edges of range images using a local statistics for 
detection of crease edges. The jump edges are first lo- 
cated using the ratio of the slopes as a measure. For 
the detection of crease edges, curvature is estimated 
a t  all the data  points using the first and second order 
derivatives of the smoothing spline. The local maxi- 
mas of curvature are considered as the candidates for 
the crease edges. This condition is not a very strong 
constraint, as a result of which a large number of pixels 
are marked as crease edges. A statistical test is done 
over the image, and the distribution of the curvature 
values within a window is used for the detection of 
crease edges. 

1 Introduction 

Range image segme~l ta t io~~ can be based on edge-based 
or region based approach. Edge based approaches 
have an advantage of reduced computatio~lal complex- 
ity and it can be used in conjunction with the region 
growing to obtain a better segmentation of the range 
images 111. Edges have been a valuable feature for 
recognition and localization of three-dimensional ob- 
jects. Bolles and Horaud [2] used distinctive edge fea- 
ture for localization of the object. Fan, Medioni and 
Nevatia (31 used edges for extraction of the features, 

and, Kriegman and Ponce [4] used image contours de- 
rived from intensity images for localization. 

The edges can be broadly classified into step edges, 
crease edges and smooth edges. In this paper we shall 
be concentrating on the step and crease edges only. 
The presence of noise and the presence of edges a t  var- 
ious scales makes the problem of detection of creases 
a difficult one. A single threshold for the entire image 
may either result is missing of the weak edges or misla- 
beling of the highly curved surfaces as crease. The edge 
detectors used for intensity images have been found 
suitable only for step edges. The Canny's edge detec- 
tor [5] for gray level images is suitable for step edges 
only. Many approaches for detection of crease edges 
have been based on first smoothing the image and then 
estimating the curvature extrema at  various scales. 

This paper describes an approach for detection of 

jump and crease edges for range images. Smoothing 
splines are used for estimation of the first and second 
order derivatives, using which, the curvature values are 
estimated along two orthogonal directions. The im- 
age is divided into non-overlapping windows and the 
edge detection is applied on each of the windows sep- 
arately. This permits a high degree of parallelizatio~~ 
for the algorithm. A statistical test is done on each of 
the windows using the histogram of the curvature val- 
ues. This local approach ensures that the weak edges 
are also detected, while at  the same time the noisy / 
textured surfaces are not labeled as edges. 

2 Preprocessing and detection 
of jump edges 

The range image is obtained using a Technical Arts 
lOOX Active Range Scanner from Michigan State [Jni- 
versity. The original image is available as three 2D 
arrays corresponding to the x, y, and r co-ordinates of 
the range pixel. The x-coordinate of the range pixel 
remains the same along the rows of the range image. 
However, the y-coordinate does not remain the same 
along the columns of the range image. As we intend to 
use interpolation of planar curves, the y-coordinates 
are computed on a rectangular grid using piecewise 
linear interpolation. To avoid oversmoothing across 
the jump edges the linear interpolation is inhibited at  
points lying between a two jump edges. After the lin- 
ear interpolation, the points lie on a rectangular grid. 

2.1 Detection of jump edges 

For the detection of jump edges in range images, the 
gradient based operators like Sobel operator are not 
suitable. Such gradient based operators, would mark 
edges even for a uniform region having a high gradient. 
Reducing the gradient, would result in missing of the 
actual edges. In our approach, for detection of edges 
in the y-direction, we compute 



Y i j  - Y i j - 1  
6(i,j)z = Itij+l - ~ i , ~ l  ' 

Yij+l - Y i j  
(1) 

and a pixel a t  ( a ,  j) is labeled as a jump edge if 

The scaling in Eq. 1 is done to compensate for the non- 
uniform sampling of the data. This criterion has been 
found to be a very simple and effective for detection of 
jump edges. The position of the jump edges is detected 
along the rows and columns of the image. 

3 Detection of crease edges 

Similar to the jump edges, the crease edges are first 
found along the rows (y direction) and then along the 
columns (x direction). The location of the crease edge 
is marked as local maxima of the curvature. For planar 
curves the curvature is given by 

di: 
Curvature = - = 3 

(3) 

which requires an estimate for the first and second 
derivative. To estimate the first and second derivative, 
we fit the data with smoothing cubic splines. The main 
motivation for using the smoothing splines is that it 
minimizes 

where m = 2 in tlie case of cubic splines and p tries to 
provide a comprise between our desire for our approx- 
imant to be smooth and a t  the same time it, should 
be able to approximate the data  points closely. In 
our experiments, we have chosen p = 0.9999 which re- 
sults in the interpolant to follow the data points very 
closely. This has a serious side effect that our estimate 
of the second derivative is not a smooth estimate, mak- 
ing the localization of the crease edges difficult. If we 
increase the smoothing, then there are two main prob- 
lems, namely, 

the maxima of the curvature is away from the 
true location of the maxima 

small creases are smoothened out and thereby 
making them difficnlt to detect. 

This behavior is similar to the scale-space filtering 
which has been investigated by a number of researcllers 
in the past. 

The spline interpolation of the data is inl~ibited at  
the jump edges to avoid over-smoothing. The position 
of the jump edges are used as break points for spline 
interpolation. 

All the pixels for which the absolute value of the 
curvature is higher than its neighbors are marked as 

candidates for the crease edges. We shall call these 
points as the local curvature peaks. This condition of 
local maxima is a very weak condition, as a result of 
which the procedure generates a large number of lo- 
cal curvature peaks. For example, for the cup-block 
image shown in Fig. 1, the number of local cun~ature 
peaks were around 6000 which is much higher than the 
actual number of crease edge pixels. We use a statisti- 
cal approach for removing extraneous curvature peaks 
generated by noise. At each of the local curvature peaks 
we also associate with it the value of the curvature at  
that pixel. 

3.1 Statistical test for detection of 
crease edges 

The extraneous crease edges are removed by inferring 
about the presence of the edge using the histogram 
of the curvature values of the local curvature peaks. In 
Fig. 2, we have plotted the histogram for the estimated 
curvature for a window of size 20 x 20 for three different 
cases, i.e., 

crease not present 

crease imbedded with surrouilding noise peaks 

isolated crease. 

The regions of interest have been highlighted in Fig. 1 .  
As we can see that in the case when the crease is 
present, the peak of the distribution is near the ori- 
gin, which confirms our belief that the noisy peaks 
have locally smaller value of curvature as compared to 
its value for a neighboring actual crease. The number 
of intervals in the histogram is decided so that, 

N 
Number of intervals = - 

d 

where N is the number of local curvature peaks in the 
window and d is the desired average. It has been done 
to normalize the histogram. If the parameter curva- 
ture was a uniform random variable, then its l~istogram 
would have an height of d. 

Depending upon the nature of tlie I~istogram, tlie 
crease edges are identified. The criterion used for iden- 
tification of the edges for different cases are 

If the peak of the histogram lies close to the ori- 
gin and the level is greater than a certain level, 
then this implies a presence of a crease in the 
window. The threshold is taken as the value a t  
which the peak a t  the origin fall below d, and all 
the pixels having the value of curvature above 
this threshold are labeled as crease edges. 

If the histogram has a large gap in between, then 
it implies that the number of extraneous creases 
are small and the population is primarily domi- 
nated by edge pixels. All the pixels lying bcvond 
this gap are labeled as CI'ehSe edges. 



If neither of the above conditions are satisfied, 
then the window is assumed not to contain any 
edges. 

We partition the entire image into non-overlapping 
windows of size M x M (in our example M = 20). 
In each of the windows the above test is applied for 
the detection of crease edges. 

All the pixels having curvature greater than the 
the threshold derived from the statistical test are can- 
didates for crease pixels. To avoid the problem of in- 
correctly labeling outlier data s crease pixel, the fol- 
lowing criterion is used for labeling : 

1. the pixel should have curvature greater than the 
threshold and its two neighboring local curvature 
peaks should also have curvature more than the 
threshold. 

2. the sign of the curvature of the center pixel 
should be same as that of its neighbors. 

If the above two criterion are satisfied then the center 
pixel and the neighboring pixels are labeled as crease 
edges. The result of this operation is shown in Fig. 3. 
As we can, there are still few stray streaks of crease 
points. These stray crease are removed on the on the 
basis of the length of the crease edges. All the crease 
edges having length less than 10 pixels are removed. 
The result of this operation is shown in Fig. 4. This 
is the only threshold in the algorithm which is non- 
adaptive and is not inferred from the imane. 

3.2 Edge growing 

The edge pixel chains at  this stage, are either smaller 
than their actual size or disconnected. This stage in- 
volves growing of the edges using the following two 
criterion. 

1. the new pixel should have the same sign of the 
curvature 

2. the new pixel should not have more than two el- 
igible neighbors. In case, a pixel having more 
than two neighbors is encountered, the edge 
growing operation is stopped. The basis for this 
criterion is that if a pixel is a crease edge, than 
normally it does not have stray pixels as its eli- 
gible neighbors. 

4 Results and Discussion 

Using the above approach, and the detected crease 
edges are depicted in Fig. 5. The number of pixels 
marked as  crease edges are 635 which quite better then 
the starting figure of > 6000 for local cur?iature peaks. 
Even the small wedges present in the block was de- 
tected satisfactorily. Due to the its statistical nature, 
the algorithm is not highly sensitive to noise. 

The results for edges detection for different objects 
are shown in Fig. 6, Fig. 7 and Fig. 8. 

The resl~lts of the above algorithm have been very 
enconraging. The main advantage of the algorithm 

is that it is highly parallelizable and can detect weak 
edges, while not labeling regions have very high cur- 
vature as edges. The algorithm was found to fail on 
edges very close to the boundary and at  places where 
a convex and concave crease are very close to each 
other. The behavior is similar to that for the step 
edges, where instead of getting the maxima of the cur- 
vature, we have a zero crossing.. This can be solved by 
using the actual value of the curvature, instead of the 
absolute value for labeling of the local curvature peaks. 
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Figure 1: Local curvature peaks 

Figure 2: Histogram of the curvature values of the 
local curvature peaks ; the solid line corresponds to no 
edges; the dotted-dash line corresponds to edges with 
noise and the dotted line correspollds to isolated edges 

Figure 5: Crease edges for the block and cup image 

Figure 6: Crease edges for cup 

Figure 3: Crease edges a t  the end the labeling using 
the threshold and nei~hborhood criterion 

Figure 7: Crease edges for a hump and block 

Figure 4: Crease edges after removing the stray pixels Figure 8: Crease edges for wye-joint 




